
LiSA: A Generic Framework for Multilanguage
Static Analysis

Luca Negrini, Pietro Ferrara, Vincenzo Arceri, Agostino Cortesi

Abstract Modern software engineering revolves around distributed applications.
From IoT networks to client-server infrastructures, the application code is increas-
ingly being divided into separate sub-programs interacting with each other. As they
are completely independent from each other, each such program is likely to be de-
veloped in a separate programming language, choosing the best fit for the task to at
hand. From a static program analysis perspective, taking on a mixture of languages is
challenging. This paper defines a generic framework where modular multilanguage
static analyses can be defined through the abstract interpretation theory. The frame-
work has been implemented in LiSA (Library for Static Analysis), an open-source
Java library that provides the complete infrastructure necessary for developing static
analyzers. LiSA strives to be modular, ensuring that all components taking part in
the analysis are both easy to develop and highly interchangeable. LiSA also ensures
that components are parametric to all language-specific features: semantics, exe-
cution model and memory model are not directly encoded within the components
themselves. A proof-of-concept instantiation is provided, demonstrating LiSA’s ca-
pability to analyze multiple languages in a single analysis through the discovery of
an IoT vulnerability spanning C++ and Java code.
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1 Introduction

Software governs most aspects of everyday life. Almost every human action, regard-
less of it being for work or leisure, involves at least one device that is running a
program. Proving these programs correct is as important as ever, as they can collect
all sorts of sensitive information (for instance, contents of medical records) or govern
critical processes (like driving a car). Software architecture has dramatically evolved
in the last decades. The classical client-server architecture, that was characteristic of
web applications, has recently seen broader adoption with the advent of mobile ap-
plications. Moreover, the commercial drive to the Software as a Service (SaaS) [36],
where vendors only distribute simple clients to customers while keeping all of the
application logic remote, led to a huge increase of cloud computing solutions. Since
clients and servers have very different purposes, the programming languages used
to implement them are typically different.
Backend is also becoming less and lessmonolithic. Recent years have seen the rise

of microservices infrastructures [10], where the atomic entity that was the server is
split into smaller independent components that communicate with each other through
APIs. Backend logic has also started being implemented through serverless appli-
cations, that is, code that runs in the cloud with (close to) no knowledge about the
environment it runs into. Partitioning the server code into isolated entities also loosen
the requirement of having those entities written in the same language, as different
tasks might exploit different languages’ peculiarities. One more possible segmenta-
tion of the backend comes with blockchain oriented applications that interact with
code present on a blockchain [42]. Smart contracts are usually written with specific
DSLs (e.g., Solidity) dedicated to a particular blockchain in order to exploit its ca-
pabilities. Only recently a stream of blockchains adopted general purpose languages
for writing smart contracts [3, 7, 32, 33].
Besides the transformation of client-server architectures, the Internet of Things

(IoT) has also risen in popularity. Devices running embedded software can interact
with various backends or other devices. IoT networks are becoming wildly adopted
in several areas [52]: healthcare, smart homes and manufacturing are just few of the
scenarios where they are applied. Once more, different programming languages can
(and likely will) be involved in the realization of the system.

1.1 An illustrative example

Consider for instance the following minimal example. The code reported in Fig-
ure 31 has been used to prove the usefulness of static analysis for discovering IoT
vulnerabilities in [24]. The code implements a system composed of a joystick and
a robotic car that interact through a gateway. The Java fragment in Figure 1, run-
ning on the gateway, initializes the whole system and then repeatedly queries the

1 Available at https://github.com/amitmandalnitdgp/IOTJoyCar.

https://github.com/amitmandalnitdgp/IOTJoyCar
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1 class JoyCar {
2 public native int readUpDown();
3 public native void runMotor(int value);
4 public static void main(String[] args) {
5 JoyCar rc = new JoyCar();
6 //Initialization
7 ...
8 while(true){
9 rc.runMotor(rc.readUpDown());
10 //Turn based on joystick input
11 ...
12 }
13 }
14 }

Fig. 1: Java code
1 JNIEXPORT jint JNICALL Java_JoyCar_readUpDown(JNIEnv *env, jobject o){
2 return readAnalog(A1);
3 }
4 long map(long val, long fl, long fh, long tl, long th){
5 return (th - tl) * (val - fl) / (fh - fl) + tl;
6 }
7 void motor(int ADC){
8 int value = ADC - 130;
9 softPwmWrite(enablePin, map(abs(value), 0, 130, 0, 255));
10 }
11 JNIEXPORT void JNICALL Java_JoyCar_runMotor(JNIEnv *env, jobject o, jint val){
12 motor(val);
13 }

Fig. 2: Embedded C++ code

Fig. 3: Excerpt of the JoyCar source code

joystick for steer and throttle. The C++ fragment in Figure 2 instead, implementing
the remaining two components, interacts with the joystick’s sensors and the car’s
motor. The two fragments communicate through the Java Native Interface (JNI).
Here, the authors are interested in detecting the IoT Injection attack that can happen
if the sensors’ outputs, that could be tampered with, can flow into the motor’s input
without being sanitized, exposing the car to attacks that could damage it. Authors
resort to Taint analysis [21,51] for the task, but they require more than one analyzer:
since the flow might span between the two codebases, analyses for Java and C++ are
needed. Julia and CodeSonar were selected for the task, as they both were equipped
with configurable Taint analysis engines able to receive a specification of sources
and sinks from the user. The authors’ overall analysis proceeds as follows:

1. the value returned by function readAnalog was marked as source of tainted
information for CodeSonar;

2. the second parameter of function softPwmWrite was marked as a sink for
tainted information for CodeSonar;

3. to detect tainted values flowing from C++ to Java code, the value returned by
Java_JoyCar_readUpDown was marked as sink for CodeSonar;
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4. to detect tainted values flowing from Java to C++ code, the first parameter of
JoyCar.runMotor was marked as sink for Julia;

5. a first round of Taint analysis was run with both analyzers: Julia did not find any
vulnerability (as no sources were present under Java), but CodeSonar did find a
flow of tainted data going into Java_JoyCar_readUpDown;

6. a second round was run after marking JoyCar.readUpDown’s return value as
source for the Java analysis, and this time Julia detected a flow of tainted data
going into the first parameter of JoyCar.runMotor;

7. a third and final round was run after marking Java_JoyCar_runMotor’s third
parameter as source for CodeSonar, that was now able to detect the IoT Injection
vulnerability with softPwmWrite as sink.

Despite the successful discovery of a vulnerability that spanned multiple lan-
guages, the limits of this approach are quite evident: since tools need to exchange
information at each iteration, multiple rounds of analysis are needed to reach a
fixpoint over the shared information, each composed by one analysis for each tool
involved. Moreover, tool communication is hard, even more if those come from
different vendors as they might not agree on how information is exported and im-
ported. Furthermore, communicating the information might not be an easy task. In
this example, the authors focused on a “binary” property: a value is either tainted
or not. However, with more complex structures (e.g., Polyhedra [17]) finding the
appropriate format to exchange information between analysis might not be trivial.

1.2 Contribution and paper structure

This paper formalizes the structure of LiSA, a Library for Static Analysis aimed
at achieving multilanguage analysis that can be used to create static analyzers by
abstract interpretation [14, 15]. Roughly, LiSA provides the full infrastructure of a
static analyzer: starting from an intermediate representation in the form of extensible
control flow graphs (CFGs), LiSA lets users define analysis components, and then
takes care of orchestrating the analysis using a unique fixpoint algorithm over CFGs.
Moreover, parsing logic is left to the user, that will define frontends translating
source code into CFGs (modeling the syntax of the input program), while also
providing rewriting rules for each CFG node into symbolic expressions, an internal
extensible language representing atomic semantic operations (thus modeling the
semantics of each instruction of input program). We then provide a proof-of-concept
multilanguage analysis using LiSA on the example reported in Section 1.1. LiSA
comes as a Java library available on GitHub2.
The remainder of this paper is structured as follows. A high-level overview is first

introduced in Section 2, depicting the role of all the analysis components and how
they cooperate to perform analyses. CFGs and symbolic expressions are discussed

2 https://github.com/lisa-analyzer/lisa.

https://github.com/lisa-analyzer/lisa
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Fig. 4: LiSA’s architecture

in Section 3, defining the languages that LiSA uses for syntax and semantics, re-
spectively. Section 4 describes the modular Analysis State used represent pre- and
post-states. The Interprocedural Analysis that orchestrates LiSA’s fixpoint is pre-
sented in Section 5. In Section 6, we define the role of frontends in compiling the
source programs into LiSA’s CFGs. We conclude the paper with a proof-of-concept
multilanguage analysis on the IoT network of Section 1.1 in Section 7. An in-depth
discussion of each component is available in [39].

2 LiSA’s overall architecture

We begin by providing a high-level overview of the analysis pipeline, that is shown
in Figure 4. The analysis starts by logically partitioning the input application P into
programs P𝑖 , each written in a single programming language L𝑖 . L𝑖-to-CFG com-
pilers, called frontends (top-left corner of Figure 4), are invoked on such programs
to obtain a uniform representation of all the code to analyze in the form of a LiSA
program P𝑖

𝐿
. Frontends are more than compilers, as they also provide logic to the

analysis, such as language-specific semantics of the instructions present in CFGs,
semantic models for library code, and language-specific algorithms for common
language features (e.g., call resolution and inheritance rules). The final version P𝐿
of the translated program to analyze is the union of all P𝑖

𝐿
. At this point, LiSA can be

invoked on P𝐿 with a configuration of the analysis features and the implementations
of the various components that are to be executed, namely:

• the Interprocedural Analysis, responsible for the computation of the overall
program fixpoint and for computing the results of function calls;
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• the Call Graph, used by the Interprocedural Analysis to find call targets;
• the Abstract State, that computes the abstract values during the analysis;
• the set of Checks, that produce warnings based on the result of the analysis.

P𝐿 is fed to the Interprocedural Analysis (left-most blockwithin LiSA in Figure 4),
that will compute a fixpoint over it. When the Interprocedural Analysis needs to
analyze an individualCFG, it will invoke a unique fixpoint algorithm defined directly
onCFGs (central portion of LiSA in Figure 4). As the language-specific semantics of
instructions is embedded in CFG nodes, called Statements, the fixpoint algorithm
will use such semantics as transfer function. If the Statement performs calls as
part of its semantics, it will interact back with the Interprocedural Analysis to
determine the returned values, as how those are evaluated depends directly on how
the overall fixpoint is computed. If the call’s targets are unknown (for instance, if the
call happens in a language with dynamic method dispatching), the Interprocedural
Analysis can delegate targets resolution to the Call Graph (inner component of
Interprocedural Analysis in Figure 4), that will use type information together with
language-specific execution model to determine all possible targets. Alternatively,
a non-calling Statement’s semantics can also rewrite the node into a sequence of
symbolic expressions, that is, atomic instructions with precise semantics, that can
be passed to the Analysis State for evaluation. LiSA’s Analysis State (right-most
block of LiSA in Figure 4) is composed by an Abstract State modeling the memory
state at a given program point, together with a collection of symbolic expressions
that are left on the stack after evaluating it. An Abstract State is a flexible entity
whose main duty is to make the Value Domain, responsible for tracking values of
program variables, communicate with the Heap Domain, that instead tracks how the
dynamic memory of the program evolves at runtime. Whenever an expression is to
be evaluated by an Abstract State, the latter first passes it to the Heap Domain, that
will record all of its effects on the memory, such as the allocation of new regions or
the access to some object’s fields. Then, theHeap Domainwill rewrite all portions of
the original expression that deal with the memory. According to the implementation-
specific logic, one or more instrumented variables will be used to replace such
portions, modeling their resolution to memory addresses that can be treated as
regular variables. After the rewriting has been performed, the resulting expression
will be passed to theValue Domain, that will track values and properties regarding the
variables appearing in it. Note that, with this architecture, each component simplifies
the program for the rest of the analysis pipeline. Interprocedural Analysis abstracts
away calls from the program to analyze, leaving the Analysis State and its sub-
components with non-calling programs. Successively, the Heap Domain removes
every expression that deals with dynamic memory, substituting it with synthetic
variables. At this point, the Value Domain has to deal with programs containing only
variables, constants, and operators between them.
When an overall fixpoint is reached, the computed pre- and post-states for each

Statement, together with the Call Graph that has been built up, are passed to
the Checks (top-right corner within LiSA in Figure 4) that have been provided to
the analysis. These are simply visitors of the program’s syntax, that can use the
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1 class A {
2 int f, g;
3 void main(String[] args) {
4 A a = new B();
5 a.foo(10);
6 }
7 int foo(int w) {
8 return w + 2;
9 }
10 }
11
12 class B {
13 int foo(int w) {
14 this.f = w + 3;
15 this.g = this.f * 2;
16 return this.g + this.f;
17 }
18 }

Fig. 5: Running example for LiSA’s architecture overview

information computed by the analysis to issue warnings for the user. Since these are
a standard component of static analyzers, they will be omitted by this work.
Example. Consider the example Java code from Figure 5. To analyze it, a Java fron-
tendwill first parse the code and produce three different CFGs, one for each method.
Supposing that the Interprocedural Analysis applies context-sensitive [46] rea-
soning, the analysis could follow call-chains starting from the main CFG, analyzing
CFGs are they are invoked. Thus, the first fixpoint algorithm to be invoked would be
the one of main. Here, when the call to foo(10) at line 5 is encountered, an entry
state for the targets of the call would be set up by assigning 10 to w. How the call
would be resolved to its targets depends once again on the configuration. Supposing
that the Call Graph relies on the runtime types inferred for the receiver [48], the
call will be resolved to B.foo that can be analyzed (that is, whose fixpoint can be
executed) using the prepared state. The code of B.foo deals with heap structures.
The assignment at line 15 could be rewritten as l_0 = l_1 * 2 if theHeap Domain
is precise enough to distinguish between different fields of the same object, or as
l_0 = l_0 * 2 if it is not. Nonetheless, the resulting expression will not contain
any reference to memory structures, and can be then processed by the Value Domain
(e.g., intervals [14]) agnostically w.r.t. if and how a rewriting happened.

3 The internal language

Before detailing the separate components of LiSA, we introduce and discuss (i) the
CFG structure that LiSA uses for representing programs, and (ii) the symbolic ex-
pression language used as intermediate representation for analysis. As programming
languages comewith wildly different syntax, it is important to find a common ground
to model their semantics so that analyses are not required to handle constructs from
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all languages. In fact, this is a common practice among static analyzers, even ones
targeting a single language: moving to a uniform and more convenient intermediate
representation (IR) that is usually enriched with additional information (e.g., dy-
namic typing) can make writing analyses much easier. Different syntactic constructs
with the same (or similar) meaning can be represented by the analyzer as a unique
IR construct, and complex ones can be decomposed as a sequence of them. Analyses
can then attribute semantic meanings to such IR constructs with no knowledge of
the original syntactic ones they represent.
Rewriting towards the IR can typically be achieved at parse time, after ingesting

the target application, or at analysis time, before passing the code to the abstract
domains. LiSA implements hybrid rewriting: first, source code is compiled to control
flow graphs (CFGs) by frontends, then each CFG node is rewritten into one or more
symbolic expressions during the analysis. CFGs thus embed syntactic structures
and language-specific constructs within them (i.e., + is a syntactic construct that
might represent numeric addition, string concatenation, . . . ), while each symbolic
expression has a unique semantic meaning.
LiSA’s programs are thus composed of CFGs, that can be logically grouped in

CompilationUnits, a generalization of the concept of classes in object-oriented
software. As both the structure and meaning of CompilationUnits mirrors the one
of classes (with some additional parametrization for language-specific features like
multiple inheritance), and does not directly influence the infrastructure of LiSA,
their definition is omitted in this work. Thus, we will refer to LiSA programs as a
collection of CFGs.

3.1 Control flow graphs

Control flow graphs [1] (CFG) are directed graphs that express the control flow
of functions. In a CFG, nodes contain the instructions of the functions, and edges
express how the execution flows from one node to another. This means that all
the syntactic constructs that form loops, branches and arbitrary jumps are directly
encoded in the CFG structure, simplifying the code to analyze. LiSA’s CFGs are
extensible: Statement and Edge are the base definitions of what nodes and edges
are, respectively, while concrete instances are defined in frontends.
A Statement (base class for CFG nodes) represents an instruction appearing

in a function, and thus corresponds to a syntactic construct that does not modify
the control flow (that is, it is not a loop, a branch or an arbitrary jump). When
the evaluation of a Statement leaves a value on the operand stack, it is called an
Expression whose type is the one of the generated value. Examples of Statement
are return and assert, while an Expression can be a reference to a local vari-
able by its name, an assignment, or a sum. The Call expression, together with its
descendants, plays a central role in LiSA and will be further discussed in Section 5.
Note that Statements do not have a predefined semantics: in fact, the class defines
a semantics method where implementers can define language-specific reasoning
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and interact with entryState (instance of Analysis State representing the pre-state)
and interproc (instance of Interprocedural Analysis offering interprocedural rea-
soning) to compute the post-state for the Statement.
The Edge class is the base class for CFG edges. The traverse method defined

by this class expresses how the post-state of its source node, in the form of an
Analysis State instance, is transformed when the edge is traversed. LiSA comes
with three default implementations for edges: SequentialEdge, TrueEdge and
FalseEdge. SequentialEdge represents an unconditional flow of execution from
source to edge, with no modification to the initial Analysis State (i.e., its traverse
implementation returns its parameter unaltered). TrueEdge instead models a flow of
execution conditional to the evaluation of the expression at its source: the execution
proceeds by reaching the edge’s destination only if it evaluates to true. Conversely,
FalseEdge implements a conditional flow of execution that reaches the edge’s
destination only if the expression at its source evaluates to false.
Finally, LiSA offers native CFGs, that is, CFGs with a single Statement and no

Edges, as a mean to model individual library functions. Whenever a call to one of
these CFGs is found, the call’s result can be evaluated by rewriting it into the only
statement contained in the native CFG, and then executing its semantics method.
Modeling complex or frequently used library functions through native CFGs can
drastically reduce the complexity of the analysis, as less code needs to be analyzed,
while still providing all the necessary information about the modeled functions.

3.2 Symbolic expressions

A static analyzer’smain duty is to compute program properties by taking into account
the semantic meaning its instructions. In this context, an extensible set of syntactic
constructs such as the one provided by LiSA through CFGs comes with an intrinsic
problem: instructions (i.e., Statements) do not have a well-defined semantics, as
that is parametric to the source language. To recover well-definedness, LiSA adopts
a two-phases rewriting: not only is the source program compiled to CFGs, but each
of their Statement gets rewritten into symbolic expressions during the analysis.
The SymbolicExpression class is the base type for the expressions that LiSA’s

analysis components understand and analyze. Note that there is a clear distinction
between expressions dealing with values of variables (i.e., ValueExpressions) and
ones dealing with memory structures (i.e., HeapExpressions). This is a direct con-
sequence of the architecture, introduced in Section 2 and discussed in Section 4, that
separates domains dealing with the two worlds, decoupling their implementations.
ValueExpressions model what can be handled entirely by the Value Domain: con-
stants, variables, and operators between them. On the other side, HeapExpressions
represent operations that change or navigate the structure of the dynamic memory
of the program. As for CFGs, Statements and Edges, symbolic expressions are
also extensible. Note that no symbolic expression is defined for calls, as those are
abstracted away by the Interprocedural Analysis (Section 5).
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To better explain how the second rewriting is carried out, let us consider the
expression new B() at line 5 of Figure 5. In Java, object instantiation consists of
four operations: (i) allocation of a memory region, (ii) creation of a pointer to the
region, (iii) invocation of the desired constructor using the fresh pointer as receiver,
and (iv) storage of the pointer on the operand stack. Such behavior could bemimicked
by a Statement instance with the following (simplified) semantics function:

1 AnalysisState semantics(AnalysisState entry, InterproceduralAnalysis iproc) {
2 // create a synthetic receiver
3 VariableRef rec = new VariableRef("$receiver");
4 AnalysisState recState = rec.semantics(entryState, interproc);
5 // assign the fresh memory region to the receiver
6 HeapReference ref = new HeapReference(new HeapAllocation());
7 AnalysisState callState = entryState.bottom();
8 for (SymbolicExpression v : recState.getComputedExpressions())
9 callState = callState.lub(callstate.assign(v, ref));
10 // call the constructor
11 String name = createdType.toString();
12 Expression[] params = ArrayUtils.insert(0, expressions, rec);
13 UnresolvedCall call = new UnresolvedCall(name, name, params);
14 AnalysisState sem = call.semantics(callState, interproc);
15 // leave a reference on the stack
16 return sem.smallStepSemantics(ref);
17 }

While the methods exploited in this snippet are the subject of the following sec-
tions, we can nonetheless capture the intuition behind them. First, a VariableRef
(that is an instance of Statement and thus modeling the syntactic reference to a
program’s variable by its name) is created at line 3, mimicking the creation of the
constructor call’s receiver. Then its semantics is computed at line 4 starting from
the pre-state entry, obtaining a new instance of Analysis State (Section 4) that
will contain the Variable (an instance of SymbolicExpression) corresponding
to it. The following five lines are responsible for making such variable point to a
newly allocated memory region: line 9 assigns a pointer (line 6) to a region that
is being allocated in-place to the Variable corresponding to the receiver (line
8). Next, the call to the constructor is performed at line 14 by (i) extracting the
name of the type created by the expression (line 11, where createdType is a field
containing the Type being instantiated) as both the class and method name, and
(ii) adding the instrumented receiver to the original parameters of the constructor
call (line 12, where expressions is a field containing the original parameters and
ArrayUtils.insert is a method that clones an array and adds a new element to it).
The semantics of the UnresolvedCall of line 14 will defer the resolution and eval-
uation to the Interprocedural Analysis. The post-state of the call is then used at line
16 to reprocess the reference to the memory region through smallStepSemantics,
returning the result as the final post-state of the whole instruction.

4 The Analysis State

The state of LiSA’s analyses is modularly built bottom-up, ensuring that each com-
ponent does not have visibility of its parents and siblings. Modularity entails that no
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additional knowledge is needed to implement a component other than what is strictly
required by it. As presented in [26], this is crucial for picking up LiSA quickly.
Each instance of Analysis State represent both elements of an ordered structure
(thus exposing methods for partial ordering, least upper bound, . . . ), and abstract
transformers able to produce new elements (offering methods such as assign and
smallStepSemantics that evaluate the semantics of a symbolic expression).
Webriefly discuss each internal component of theAnalysis State, introducing them

bottom-up.A full discussion of each can be found in [39]. LiSA’sValue Domain is the
analysis component responsible for tracking properties about program variables, and
it is the last component taking action to compute a symbolic expression’s semantics.
Examples Value Domain implementations are Interval [14], Polyhedra [17], and
Tarsis [40], or their combinations (e.g., products [11] and smashed sums [4]). LiSA
provides a Value Domain implementation named ValueEnvironment defining the
point-wise logic for Cartesian (i.e., non-relational) abstractions. Domains such as
Interval can thus be implemented by (i) providing lattice operations for single
intervals, and (ii) defining the logic for expression evaluation. LiSA then takes care
of wrapping the domain inside a ValueEnvironment, providing a unique functional
lifting to all Cartesian abstractions. An example implementation is presented in [26].
LiSA’s Heap Domain is the analysis component responsible for tracking how the

dynamicmemory of the program evolves during its execution. As the sole component
having full knowledge on how expressions are resolved to memory locations, the
Heap Domain operates before the Value Domain as it must simplify memory-dealing
expressions that the latter cannot handle. Examples Heap Domain implementations
are Andersen’s Pointer Analysis [2] and Shape analysis [45]. Moreover, as for
Value Domains, combinations of Heap Domains are still Heap Domains.
LiSA’s Abstract State wraps both Value and Heap Domains, coordinating their

communication. It is designed after the framework presented in [22], where the two
communicate by means of expression rewriting and variable renaming. Roughly,
the semantics of such framework lets the two domains compute properties inde-
pendently whenever an expression only deals with values or memory. When one
instead requires knowledge about both worlds, the expression is first evaluated by the
Heap Domain that tracks its effects on the memory. Then, abstract locations called
heap identifiers are used to replace memory-dealing sub-expressions, and the Value
Domain can process this rewritten expression to track properties about those identi-
fiers. Furthermore, as the semantics of theHeap Domainmight materialize or merge
heap identifiers, a substitution can be applied to the Value Domain when necessary,
before computing its semantics. A substitution can be described as a sequence of
multi-variable replacements between heap identifiers. The concrete implementation
of the communication between the Heap Domain and Value Domain is provided by
the SimpleAbstractState class. Abstract State is left modular and extensible as
further layers of abstraction can be applied on the entire state. For instance, Trace
Partitioning [43] must be applied on the state as a whole, and can be defined as
an Abstract State implementing a function from execution traces to Abstract States.
The Analysis State is the outer-most component, and it is thus the one explicitly

visible to the rest of the analysis. A direct implication of this is that other compo-
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Fig. 6: Sequence diagram Analysis State’s assign

nents are agnostic w.r.t. how LiSA abstracts memory structures and values of the
program. Its main duty is to wrap the Abstract State together with additional seman-
tic information over which the analysis must reach a fixpoint. Here, we identify as
mandatory information only the set of symbolic expressions that are left on the stack
after evaluating an arbitrary expression, but more can be added.
To grasp the intuition of how the Analysis State operates, consider the sequence

diagram of Figure 6, depicting how the assign method behaves. Note that the
pattern shown here is also valid for the other semantic operations, as they all follow
the overall communication scheme defined in [22]. When the assignmethod of the
Analysis State is invoked, the call is immediately forwarded to the Abstract State.
The latter will first compute the effects of the assignment on the dynamic memory
through the Heap Domain’s own assignmethod. Then, since such operation might
have caused materialization or merge of heap identifiers, the Abstract State retrieves
a substitution from theHeap Domain, and uses it to update the Value Domain. Then,
Heap Domain’s rewrite replaces portions of the assigned expression dealing with
dynamic memory with heap identifiers, rendering the right-hand of the assignment
memory-free. The updated Value Domain instance is then used to evaluate the
effects of the assignment on program variables, using Value Domain’s assign
method on the rewritten expressions. The new Heap and Value Domain instances
are then wrapped into a fresh Abstract State object, that is returned to the caller
as part of the final Analysis State that is built as result of the original call. Note
that, as Abstract State, Heap Domain and Value Domain are defined modularly,
each computational step might hide additional complexity (for instance, the Value
Domain could be a Cartesian product of several instances, whose assign methods
are recursively invoked). Moreover, the Value Domain can optionally rely on an
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inner Non-Relational Domain instance to compute the semantics of an expression,
exploiting its eval method.

5 Interprocedural Analysis

LiSA’s Interprocedural Analysis is responsible for computing both a program-wide
fixpoint and the result of calls, as the two features are strictly related. In fact, the com-
putation of the overall program fixpoint is a direct consequence of call evaluation. If
a pre-computed result is to be returned when a call is encountered, call-chains should
be analyzed bottom-up starting from the target of the last call, thus ensuring that
results are already available when needed. Instead, if results are to be freshly gen-
erated, call-chains should be analyzed top-down, starting from the CFG containing
the first call. LiSA’s semantic analysis begins by querying Interprocedural Analysis
for the program’s fixpoint, that will implement a strategy for traversing call-chains
and reaching a fixpoint on each of its CFGs. Individual CFG fixpoints are evaluated
using the classical worklist based fixpoint over graphs, uniquely implemented in
LiSA. Such algorithm exploits the language-specific semantics functions defined
by Statements. As discussed in Section 3.2, non-calling Statements will rewrite
themselves as a sequence of symbolic expressions. When a call must be evaluated,
the rewriting process is not enough.
Four concrete Call instances are included in LiSA: NativeCall, CFGCall,

OpenCall, and UnresolvedCall. NativeCalls only target native CFGs: the se-
mantics of this call exploits the latter’s rewriting functionality to transform them
into a Statement instance, and then delegates the computation to its semantics.
CFGCalls instead invoke CFGs, and thus have to access their targets’ fixpoint re-
sults through the Interprocedural Analysis. Instead, OpenCalls are evaluated as an
abstraction of an unknown result (for instance, one could conservatively assume
that open calls can natively manipulate memory, thus always return > as post-state).
Lastly, UnresolvedCalls only carry signature information, and are not yet bound
to their targets. Target resolution is performed by the Call Graph, but a further
degree of modularity is added by having the call interact with Interprocedural Anal-
ysis instead, as some implementations (i.e., intraprocedural ones) might return fixed
over-approximations when calls are evaluated, bypassing the Call Graph invocation
that otherwise happens here. Regardless, every UnresolvedCall is converted to
one of the other Call instances3, and its semantics can be normally applied.

Interprocedural Analysis implementations can be context-sensitive [31,46],
following call-chains top-down evaluating each CFG fixpoint as they are called,
or modular [16] (also called summary-based), where call-chains are analyzed
bottom-up accessing pre-computed results.
The Call Graph is tasked with resolving UnresolvedCalls to their targets. As

such calls only come with signature information (i.e., the name of the target CFG)

3 UnresolvedCalls might resolve to both CFGs and native CFGs: here, LiSA instantiates a
MultiCall, whose semantics yields the lub of the internal CFGCall and NativeCalls.
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and their parameters, the whole program needs to be searched for possible targets.
The search is a complex operation that relies on several features of programming
languages, and it can be logically split into two phases: scanning for possible targets
along the program and matching the actual parameters to each candidate’s signature.
Candidate scanning depends on the call type. If the call is known to have a receiver

(that is, if it is an instance call), only the receiver’s type hierarchy is to be searched
for targets. Hierarchy traversal is language-specific, as it is influenced by how the
language enables inheritance (e.g., it might be single or multiple, or it might provide
explicit and implicit interface implementations). Instead, choosing the starting point
for hierarchy traversal is a feature depending on the implementation ofCall Graph: for
instance, a graph implementing Class Hierarchy analysis [18] would consider
all possible subtypes of the receiver’s static type, while one implementing Rapid
Type analysis [5] would restrict such set to the subtypes instantiated by the
program. Regardless, the hierarchy of candidate types must then be searched for
CFGs with a matching name. If the call instead does not have a receiver (i.e., if it is
static), the whole program needs to be searched for CFGs with a matching name.
Once candidates have been selected, the actual parameters of the call must be

matched with the formal ones defined by each target. Once more, this feature is
language-specific: capabilities like optional parameters and named ones, as well as
how types of each parameter are evaluated complicate the matching process to a
point where no unique algorithm can be applied. To make resolution parametric,
LiSA delegates language-specific call resolution features to each UnresolvedCall
instance: when created, users need to specify both a strategy for traversing a type
hierarchy given a starting point, and a strategy for matching a list of Expressions
to an arbitrary signature. Note that, once a call has been resolved, an entry state for
the targets has to be prepared by assigning actual parameters to formal ones. As this
process also follows the parameter matching, the Interprocedural Analysiswill defer
this preparation to the same algorithm.

6 Frontends

Frontends are tasked with performing the first rewriting phase, translating a (possibly
partial) source program into one made of CFGs that can be analyzed by LiSA. As
mentioned at the beginning of Section 3, a component performing a translation is
included in most static analyzer, as moving to a more convenient representation
makes writing analyses simpler. LiSA’s frontends, however, are more than just raw
compilers: as the sole component with deep knowledge about the language they
target, they must define Statements with their semantics, types, and language-
specific algorithms that implement the execution model of the language.
Even if they might seem less relevant to the whole analysis process, writing and

maintaining a complete frontend for a language is no easy endeavor. In fact, mature
and widespread programming languages have a very complex semantics to model,
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with features that might be ambiguous or not formally defined4. Moreover, each
language has its own evolution, leading to different versions needing support. This
not only translates to a higher number of instructions to model, but also to a variety
of runtime environments (containing different libraries and software frameworks)
whose semantics has to be taken into account for precise static analysis.
Writing a frontend usually begins with the code parsing logic. Whenever it is

not possible to use official tools (e.g., by plugging into the compilation process),
parser generators such as ANTLR5 can be used to create custom abstract syntax
tree visitors. Statement instances for each instruction must be included as part of
the frontend (potentially using common implementations provided by LiSA), each
one providing its own semantics and bringing language-specific algorithm that are
exploited during the analysis. Type inference is optional, as the one ran by LiSA
during the analysis can be exploited inside semantics functions. This means that
constructs such as +, that in most languages have different semantics depending on
the type of its operands, can be modeled by a single Statement instance. Modeling
runtimes and libraries is achieved by means of native CFGs or SARL [25].

7 Multilanguage analysis

We now instantiate LiSA and its components to showcase how multilanguage anal-
yses can be easily defined. We demonstrate the effectiveness of our approach on the
JoyCar IoT system of Figure 1.1. Code snippets reported in this section are available
on GitHub6, where the full implementation of this analysis is published.
As the codebase is composed of two languages, a frontend for each has to be

built. These have been developed using ANTLR for parser generation, and mostly
exploit Statements and Edges provided out-of-the-box from LiSA. The key aspect
w.r.t. multilanguage analysis is the handling of constructs that enable inter-language
communication, offered here by the Java Native Interface (JNI). At runtime, the Java
VMtries to resolve calls to nativemethods using the name-mangling scheme reported
in the JNI specification7. We thus proceeded by providing an implementation for
native methods found in Java code using the following (simplified) snippet:

1 void parseAsNative(CFG cfg, String className, String name,
2 Parameter[] formals, Type returnType) {
3 String mangled = nameMangling(className, name, formals);
4 Expression[] args = buildArguments(formals);
5 UnresolvedCall call = new UnresolvedCall(mangled, args);
6 if (!returnType.isVoidType())
7 cfg.addNode(new Return(call));

4 For instance, Python does not have a formal specification of its semantics, while C admits
syntactic constructs whose behavior is undefined.
5 https://www.antlr.org/., with several well-tested grammars available at https://github.
com/antlr/grammars-v4

6 https://github.com/lisa-analyzer/lisa-joycar-example.
7 https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.
html, paragraph “Resolving Native Method Names”.

https://www.antlr.org/.
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4
https://github.com/lisa-analyzer/lisa-joycar-example
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/design.html
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8 else {
9 Ret ret = new Ret();
10 cfg.addNode(call);
11 cfg.addNode(ret);
12 cfg.addEdge(new SequentialEdge(call, ret));
13 }
14 }

The code above bridges the two codebases by creating an UnresolvedCall, where
(i) the target’s name is built with the mangling scheme from the specification, (ii) the
arguments for the call correspond to the ones passed to the native method preceded
by the pointer to an instance of JNIEnv (an object required by JNI to hold pointers
to native functions), and (iii) the value returned by the call is also returned by the
native method, if any. With this setup, not only can the C++ code be parsed regularly,
but the analysis components are also agnostic to the presence of JNI, as the call
will to the native method is treated exactly as any other call. Note that, while this
specific example did not require it, the generated call can be preceded by arbitrary
instrumentations (e.g., the state conversion typical of boundary functions).
The next step is to select the analysis components. We mostly rely on analyses

natively provided by LiSA:

• the Interprocedural Analysis is set to a context-sensitive implementation
that follows call-chains top-down, thus starting from the main method and
traversing them until a recursion is encountered (and thus enabling LiSA to
follow every call in our target application);

• the Call Graph uses inferred runtime types of variables and expressions;
• the Abstract State used is SimpleAbstractState;
• as the program properties do not rely on dynamic memory, we use a fast but
imprecise Heap Domain called MonolithicHeap, that abstracts each memory
location to a unique synthetic one;

ForValue Domain, we implemented a Taint analysis [21,51] as aNon-Relational
Domain, whose simplified source code is reported in Figure 7. The domain is based on
the poset 〈{⊥, 𝑐𝑙𝑒𝑎𝑛, 𝑡𝑎𝑖𝑛𝑡𝑒𝑑}, {(⊥, 𝑐𝑙𝑒𝑎𝑛), (𝑐𝑙𝑒𝑎𝑛, 𝑡𝑎𝑖𝑛𝑡𝑒𝑑)}〉, that forms a finite
(and thus complete) lattice using trivial t and u operators that, given a pair of ele-
ments, return the greater and smaller of the two, respectively. Implementation-wise,
the superclass BaseNonRelationalValueDomain handles base cases of lattice op-
erations, that is, when one of the operands involved is either > (𝑡𝑎𝑖𝑛𝑡𝑒𝑑) or ⊥, or
when the two operands are the same element. Hence, no additional logic needs to be
implemented fort,∇ and v. Recursive expression evaluation is also provided out-of-
the-box by BaseNonRelationalValueDomain, and the concrete implementation
only has to provide evaluation of individual expressions. Specifically, we consider
all constants as 𝑐𝑙𝑒𝑎𝑛, while evaluation of unary, binary and ternary expressions is
carried out by computing the t of their arguments. Tainted values are generated only
when evaluating variables, relying on their annotations: as LiSA assigns the result of
Calls to temporary variables, transferring all annotations from the call’s targets, this
enables uniform identification of both sources (i.e., annotated with TAINT_ANNOT)
and sanitizers (i.e., annotated with CLEAN_ANNOT). Variables are thus considered
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1 public class Taint extends BaseNonRelationalValueDomain<Taint> {
2 static final Annotation TAINT_ANNOT = new Annotation("lisa.taint.Tainted");
3 static final Annotation CLEAN_ANNOT = new Annotation("lisa.taint.Clean");
4
5 static final Taint TAINTED = new Taint(true);
6 static final Taint CLEAN = new Taint(false);
7 static final Taint BOTTOM = new Taint(null);
8
9 final Boolean taint;
10 Taint(Boolean taint) {
11 this.taint = taint;
12 }
13
14 Taint evalIdentifier(Identifier id, ValueEnvironment<Taint> env) {
15 Annotations annots = id.getAnnotations();
16 if (annots.contains(TAINT_ANNOT))
17 return TAINTED;
18 if (annots.contains(CLEAN_ANNOT))
19 return CLEAN;
20 return env.getState(id);
21 }
22
23 Taint evalConstant() {
24 return CLEAN;
25 }
26
27 Taint evalUnaryExpression(UnaryOperator operator, Taint arg) {
28 return arg;
29 }
30
31 Taint evalBinaryExpression(BinaryOperator operator,
32 Taint left, Taint right) {
33 return left.lub(right);
34 }
35
36 Taint evalTernaryExpression(TernaryOperator operator,
37 Taint left, Taint middle, Taint right) {
38 return left.lub(middle).lub(right);
39 }
40 }

Fig. 7: A simple Taint Analysis implementation

always 𝑡𝑎𝑖𝑛𝑡𝑒𝑑 or always 𝑐𝑙𝑒𝑎𝑛 relying on such annotations, defaulting otherwise
to the abstraction stored inside the environment.
To exploit our analysis’ results, we defined a Check instance that iterates over

the application under analysis to scan for method parameters that are annotated
with @lisa.taint.Sink, a third kind of annotation that identifies places where
tainted information should not flow. When one such parameter is found, the check
inspects all call sites where the corresponding method is invoked, and checks if the
post-state of the Expression passed for the annotated parameter contains a tainted
expression on the stack, according to our Taint domain. If it is, a warning is issued.
We then proceed by annotating as source (i.e., with @lisa.taint.Tainted) the
value returned by readAnalog, and as sink (i.e., with @lisa.taint.Sink) the
second parameter of softPwmWrite. The analysis can then be executed, obtaining
the following warning on the softPwmWrite call:
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The value passed for the 2nd parameter of this call is tainted, and it reaches
the sink at parameter ’value’ of softPwmWrite [at JoyCar.cpp:124:55]

thus showcasing that cross-language vulnerabilities can be discovered in a single
analysis run. Also note that, with the same setup, domains computing complex
structures (e.g., automata) can still operate cross-language without incurring in
expensive serializations and deserializations needed to communicate information
across analyzers.

8 Conclusion

In this chapter, we thoroughly described LiSA, a modular framework for multi-
language static analysis with an open-source Java implementation. LiSA operates
by analyzing an extensible language of CFGs, whose node contain user-defined
language-specific semantics that translate them into symbolic expressions. These are
atomic constructs with precise semantics, that abstract domains can analyze. LiSA’s
infrastructure modularly decomposes semantics evaluation into separate tasks, each
carried out by a different analysis component. Each such component performs ag-
nostically w.r.t. the concrete implementations of other ones, and is responsible for
abstracting specific program features. The Interprocedural Analysis, in cooperation
with the Call Graph, abstracts calls and call-chains, leaving the rest of the analy-
sis with call-free programs. Then, the modular Analysis State orchestrates memory
and value abstraction. The former is performed by the Heap Domain, that abstracts
all heap operations by rewriting them with synthetic variables representing heap
locations they resolve to, leaving the Value Domain with call- and memory-free
programs. Individual library functions can be modeled as native CFGs, that is, as
special CFGs with a unique node that expresses the semantics of the whole function.
We also reported our teaching experience with LiSA, that emphasizes how the mod-
ular structure enables experimenting with LiSA achievable by Master level students.
Furthermore, we demonstrated LiSA’s capability of analyzing software written in
multiple programming languages, identifying a vulnerability that spanned Java and
C++ in a proof-of-concept case study.

8.1 Future directions

As a multilanguage analyzer, one of our objectives is to target as many programming
languages as possible. This not only means having fronteds for each of them, but also
ensuring that the internal LiSA program model is flexible and parametric enough
to represent syntactic structures, semantics, execution model, inheritance, and all of
their other peculiarities. Currently, frontends forGo, Python, Java, Java bytecode,
Rust, and Michelson bytecode are in development, but this is undoubtedly a
long-term effort. One additional vision for LiSA’s future is to not only provide
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users with an easy-to-use tool where new analysis can be implemented quickly
and tested on several languages, but where they can also easily compare different
implementations with their own. As such, we plan on extending LiSA to ship with
several well-known component implementations, from numerical and string domains
(e.g., Octagons [37] and Bricks [12]), to property domains (e.g., Information
Flow [19, 44]), to interfaces with widely accepted static analysis libraries (e.g.,
Apron [29] and PPL [6]), also widening the analysis spectrum to backward analyses.

8.2 Related work

As the field grew and matured over decades, a vast literature about static analysis
and abstract interpretation is available (most notable results are referenced in [13]),
reporting a wide spectrum of techniques and their applications to prove software
correct. Here, we focus on work strictly related to multilanguage analysis.
The initial focus on multilanguage analysis targeted combinations of similar lan-

guages. Julia [47] analyzes Java bytecode, and has been extended to also analyzeCIL
bytecode resulting from the compilation of C# code by means of a semantic trans-
lation into Java bytecode [23]. Infer [20] analyzes Java, C, C++, and Objective-C
programs by statically translating them into a proprietary intermediate representa-
tion, called SIL, composed of only four instructions. However, these approaches are
intrinsically limited by the expressiveness of the intermediate representation (Java
bytecode and SIL in case of Julia and Infer): since the set of constructs in those rep-
resentations is predefined, they might not be enough to represent features of some
languages. For instance, Java bytecode cannot express pointer arithmetic, while SIL
is not suited for dynamic typing.
Another stream of work instead considers a scenario where one central portion

of the application, written in a single programming language, interacts with native
code, that in this context can be considered as a collection of functions written
in different programming languages. [53] performs a summary-based analysis of
Android applications as a whole (that is, Java code and JNI-exposed native code),
while [49] compiles C code into an extended Java bytecode that can be analyzed by
existing Java analyzers. [27,28] perform type inference on so-called foreign function
interfaces, that is, inter-language communication frameworks like JNI, discovering
type errors otherwise visible only at runtime. [35] instead detects mishandling of
exceptions and errors raised in native code and then propagated back to Java. The
work presented in [34] computes semantics summaries from guest programs, to be
used during the analysis of a host program. All of these approaches share the same
underlying idea: to compute summaries among a family of “secondary” programs
and use them to analyze the main one (here, programs are defined as coherent
modules written in the same language). While modular summary-based analyses are
powerful and scalable, not all properties can be proven bottom-up, and often require
precise context-sensitive analyses. Moreover, not all programs can be described as
a single processing entity exploiting auxiliary codebases: for instance, mobile apps
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contain logic on both the app and the backend, with back-and-forth communication
between the two.
More recently instead, solutions for multilanguage analyses have been pro-

posed. [8, 9] provide an algebraic framework for multilanguage abstract interpre-
tations by combining existing language-specific ones through boundary functions
that perform state conversion when switching context between languages. [50] pro-
vides LARA [41] source-to-source compilation to transform Java, C, C++, and
JavaScript programs towards a common syntax, over which static analyses can be
run. Authors however focus on source-code metrics (that is, syntactic properties),
with no reasoning on runtime behaviors (that is, semantic properties).
The major alternative to the approach described in this paper is undoubtedly

Mopsa [30] (ModularOpen Platform for Static Analysis), a static analyzer based on
the abstract interpretation theory written in OCaml. Mopsa is designed to compute
fixpoints by induction on a program’s syntax. A program is an extensible abstract
syntax tree (AST) that initially contains the original source code, but that can be syn-
tactically and semantically rewritten during the analysis. Abstract domains share a
common interface, and are thus easy to compose and extend. Moreover, the domains
are responsible for dynamically rewriting fragments of the AST exploiting seman-
tic information, avoiding static translation towards an internal language. Depending
on both the target programming languages and the properties of interest, Mopsa’s
analyses need to be configured by composing a chain of abstract domains that will
dynamically rewrite portions of the AST until a common syntax is reached, over
which the remaining domains can operate independently from the source language.
Mopsa has been successfully used to analyze C and Python programs [30], show-
casing its ability to target completely different languages, including dynamic ones.
Moreover, analyses on a combination of the two have been performed [38].
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