
Stability: An Abstract Domain for the Trend of

Variation of Numerical Variables

Luca Negrini
Ca’ Foscari University of Venice

Venice, Italy
luca.negrini@unive.it

Sofia Presotto
Ca’ Foscari University of Venice

Venice, Italy
870762@stud.unive.it

Pietro Ferrara
Ca’ Foscari University of Venice

Venice, Italy
pietro.ferrara@unive.it

Enea Zaffanella
University of Parma

Parma, Italy
enea.zaffanella@unipr.it

Agostino Cortesi
Ca’ Foscari University of Venice

Venice, Italy
cortesi@unive.it

Abstract

State-of-the-art abstract domains for static analysis typically
focus on over-approximating either the values a variable can
hold at a specific program point or the relational dependen-
cies among variables. In this paper, we aim to capture the
trend of numerical values during program executions (e.g.,
increasing, decreasing, or stable) relative to preceding states.
By integrating the Stability domain with numerical domains,
we can verify co-/contra-variance relationships among po-
tentially unrelated variables. This approach has promising
applications for anomaly detection in complex software sys-
tems, and for the verification of functional requirements.

CCS Concepts: • Theory of computation → Program

analysis; Abstraction; • Software and its engineering

→ Automated static analysis.
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1 Introduction

Static analysis is a technique for inspecting program prop-
erties without concretely executing the program. Examples
of these properties may be whether the program terminates,
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which program variables are constants, or whether a pro-
gram contains safety and security issues (e.g., buffer over-
flows [17] or injection vulnerabilities [38]).

For static analysis to guarantee the presence (or absence)
of code properties, bugs, and vulnerabilities, one must adopt
an approach based on a formal methods framework. Among
these frameworks, a notable example is certainly abstract
interpretation [10, 11]. Abstract interpretation is a theoreti-
cal framework that provides a systematic way to correctly
approximate program behaviors, referred to as concrete se-
mantics, and reason about some properties of the program
of interest on such approximation, called abstract semantics.
The abstraction process is carried out by an abstract domain,
that models the concrete values manipulated by the program
and their evolution during all possible executions.
Several abstract domains have been proposed over the

years, each with a different cost-to-precision trade-off and
targeting different kinds of values and properties: numeric
values [11, 16, 23, 25], string values [4, 7, 27], types [8], depen-
dencies [5, 19], and many more. Numerical abstractions have
been the first to be studied, as proving properties over them
is pivotal in safety-critical contexts. Starting from the non-
relational domain of intervals [11], that computes indepen-
dent ranges for each variable, the abstractions can be made
more powerful by also tracking inter-variable relations (thus
taking the name of relational abstractions): pentagons [23]
(modeling relations such as 𝑥 < 𝑦), octagons [25, 36] (con-
sidering relations of the form ±𝑥 ± 𝑦 ≤ 𝑐 ∈ Q) or convex
polyhedra [3, 16], track increasingly complex relations be-
tween variables in addition to their possible values. Generally
speaking, relational abstract domains offer higher precision
than non-relational ones, but they are also more complex to
define and require additional computational efforts to track
and maintain the relationships between program variables.

The problem. The abstract domains mentioned above all
share a common idea: to track the values of each variable,
and possibly the relations over them. Dealing with values
in a sound way entails being conservative about statically
unknown values (e.g., as user inputs). Consider for instance
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the following snippet of Solidity code, where function send
transfers money between two accounts:

1 contract Coin {
2 mapping ( address => uint ) public b a l a n c e s ;
3 // [...]

4 function send ( address des t , uint amount ) public {
5 require ( amount > 0 ) ;
6 require ( amount <= b a l a n c e s [msg . sender ] ) ;
7 b a l a n c e s [msg . sender ] −= amount ;
8 b a l a n c e s [ d e s t ] += amount ;
9 }
10 }

Lines 3 and 4 check some preconditions over the values
of amount and balances[msg.sender] (where msg.sender
is a Solidity global variable containing the address of the
account that started the transaction). If those are success-
ful, a certain user-given amount of money is transferred
from the sender’s account to the receiver’s. Since amount,
balances[msg.sender] and balances[dest] can have any
value when function send is executed, traditional numeric
analyses are not able to infer properties regarding any of
the three quantities. However, it should be possible to prove
that, after the execution of send, balances[msg.sender]
has decreased and balances[dest] has increased (note that
requires aborts the execution if the given condition does
not hold). Such properties are functional requirements that ex-
press the expected behavior of programs, and often contain
conditions over their inputs. Requirements can be arbitrarily
complex, and can target a wide range of program behaviors.

Contribution. In this paper, we target requirements that
concern the evolution of numerical values during a program
execution, such as the one introduced in the previous para-
graph. We proceed by:
• defining an abstract domain for numerical stability1,
able to the detect the trend of each variable’s value
(e.g., increasing or stable);
• showing its effectiveness on two simple programs.

Paper structure. Section 2 recalls basic notions of or-
der theory and abstract interpretation. Section 3 defines a
minimalistic imperative language Imp that we use during
formalization. Section 4 defines the novel domain for numer-
ical stability, together with its abstract semantics. Section 5
applies the proposed domain to two target programs, ex-
plaining in detail how it operates. Finally, Section 6 presents
related work and Section 7 concludes.

2 Background

Order Theory. A partial order is a reflexive, transitive and
antisymmetric binary relation. A set 𝐿 with a partial ordering

1In this context, rather than the classical notion of “numeric stability” in
floating-point computations, stability refers to evolution of variables’ values:
for instance, we deem a variable as stable if its value does not change, or
unstable if its value increases and decreases repeatedly.

relation⊑ ⊆ 𝐿×𝐿 is a poset ⟨𝐿, ⊑⟩. A poset ⟨𝐿, ⊑,⊥,⊔⟩, where
⊔ is the least upper bound (lub) operator of 𝐿 and ⊥ is the
least element (bottom) of 𝐿, is a complete partial order (CPO)
if ∀𝑥,𝑦 ∈ 𝐿 we have that 𝑥 ⊔ 𝑦 belongs to 𝐿. Furthermore, a
poset ⟨𝐿, ⊑,⊔,⊓⟩, where ⊔ and ⊓ are respectively the least
upper bound (lub) and greatest lower bound (glb) operators
of 𝐿, is a lattice if ∀𝑥,𝑦 ∈ 𝐿 we have that 𝑥 ⊔ 𝑦 and 𝑥 ⊓ 𝑦
belong to 𝐿. We say that a lattice is complete when ∀𝑋 ⊆ 𝐿

we have that
⊔

𝑋,
d
𝑋 ∈ 𝐿. Any finite lattice is a complete

lattice. A complete lattice 𝐿 with greatest element (top) ⊤
and least element (bottom) ⊥ is denoted by ⟨𝐿, ⊑,⊔,⊓,⊤,⊥⟩.

Abstract Interpretation. Abstract interpretation [11, 13]
is a theory to soundly approximate program semantics, fo-
cusing on some run-time property of interest. The concrete
and the abstract semantics are defined over two CPOs,2 re-
spectively called the concrete domain 𝐶 and abstract do-
main 𝐴. Let 𝐶 and 𝐴 be CPOs, a pair of monotone functions
α : 𝐶 → 𝐴 and γ : 𝐴 → 𝐶 forms a Galois Connection (GC)
between 𝐶 and 𝐴 if for every 𝑥 ∈ 𝐶 and for every 𝑦 ∈ 𝐴

we have α(𝑥) ⊑𝐴 𝑦 ⇔ 𝑥 ⊑𝐶 γ(𝑦). We denote a Galois
Connection by ⟨𝐶, ⊑𝐶⟩ −−−→←−−−𝛼

𝛾

⟨𝐴, ⊑𝐴⟩. A GC between two
complete lattices 𝐴 and 𝐶 can be induced if 𝛼 is a complete
join preserving map, i.e., α(⊔𝐶 𝑋 ) = ⊔

𝐴{α(𝑥) | 𝑥 ∈ 𝑋 },
with 𝑋 ⊆ 𝐶 (Prop. 7 of [14]). Given ⟨𝐶, ⊑𝐶⟩ −−−→←−−−𝛼

𝛾

⟨𝐴, ⊑𝐴⟩, a
concrete function 𝑓 : 𝐶 → 𝐶 is, in general, not computable.
Hence, an abstract function 𝑓 ♯ : 𝐴→ 𝐴 must correctly ap-
proximate the concrete function 𝑓 . If so, we say that 𝑓 ♯ is
sound. Formally, given ⟨𝐶, ⊑𝐶⟩ −−−→←−−−𝛼

𝛾

⟨𝐴, ⊑𝐴⟩ and a concrete
function 𝑓 : 𝐶 → 𝐶 , an abstract function 𝑓 ♯ : 𝐴 → 𝐴 is
sound w.r.t. 𝑓 if ∀𝑐 ∈ 𝐶.α(𝑓 (𝑐)) ⊑𝐴 𝑓 ♯ (α(𝑐)).

3 The Imp Language

We introduce here a generic imperative language as a ref-
erence programming language for the rest of the paper. We
consider the core running language Imp, whose syntax is
given in Fig. 1. Imp is an imperative language handling arith-
metic expressions.3 Its basic values are integers ranging over
Z. Let P be an Imp program. Each Imp statement is annotated
with a label ℓ ∈ LabP (not belonging to the syntax), where
LabP denotes the set of the P labels, i.e., its program points.
Moreover, VarsP denotes the variables defined by P.

As usual in static analysis, a program can be analyzed by
looking at its control-flow graph (CFG for short), i.e., a di-
rected graph that embeds the control structure of a program,
where nodes are the program points, and edges express the
flow paths from the entry to the exit block. Following [37],
given a program P ∈ Imp, we define the corresponding CFG
GP ≜ ⟨NodesP, EdgesP, InP,OutP⟩ as the CFG whose nodes are

2While CPOs are the minimum requirement for the abstract interpretation
framework, (possibly complete) lattices are typically used.
3Division is excluded from Imp since its abstract semantics would not pro-
vide any additional contribution, but would add unnecessary complexity.
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a ∈ ae ::= 𝑥 | 𝑛 | a + a | a - a | a * a
b ∈ be ::= 𝑥 | true | false | b && b | b || b

| ! b | e < e | e ≤ e | e > e | e ≥ e |
e == e | e ! = e

e ∈ e ::= a | b
st ∈ stmt ::= ℓ1st ℓ2stℓ3 | ℓ1skip;ℓ2 | ℓ1𝑥 = a;ℓ2

| ℓ1if (b) { ℓ2stℓ3 } else { ℓ4stℓ5 }ℓ6

| ℓ1while (b) { ℓ2stℓ3 }ℓ4

| ℓ1input(𝑥);ℓ2
P ∈ Imp ::= ℓ1st ℓ2

where 𝑥 ∈ Vars𝑃 (finite set of variables), 𝑛 ∈ Z

Figure 1. Imp syntax.

the program points, i.e., NodesP ≜ LabP, InP is the entry
program point, and OutP is the last program point. The al-
gorithm computing the CFG of a program P can be found
in [1, 37]. An example of a CFG is depicted in Fig. 2.

A CFG embeds the control structure of the program. Thus,
to define the behavior of a CFG, it is enough to formalize the
semantics of the edge labels, namely ImpCFG ::= skip | 𝑥 =

a | b | input(𝑥), expressing the effect that each edge has
from its entry node to its exit node. Let𝑚 ∈ M ≜ 𝑋 → Z
be the set of (finite) memories. The semantics of arithmetic
expressions is captured by the function L e M : M→ Z. The
semantics of integer and Boolean expressions are standard.
Abusing the notation, we define the function L st M : M→ M
to capture the semantics of the elements of ImpCFG (that also
include Boolean expressions):

L skip M𝑚 =𝑚 L input(𝑥) M𝑚 =𝑚[𝑥 ← read()]

L b M𝑚 =

{
𝑚 if L b M𝑚 = true

⊥ if L b M𝑚 = false

L 𝑥 = a M𝑚 =𝑚[𝑥 ← L a M𝑚]
skip propagates the input memory, while input(𝑥) reads

an input value and assigns it to 𝑥 . Boolean expressions prop-
agate the input memory if the expression holds, or produce
an invalid memory (⊥) otherwise, preventing the execution
of the following statement. Finally, 𝑥 = a evaluates a in𝑚

and updates the latter with the new value for 𝑥 .
Static analysis computes invariants for each program point.

Following [9], we define an operational semantics which re-
lates each program point (i.e., each node of a CFG) to the
set of the possible traces reaching that program point. Given
a program P and a program label ℓ , our semantics captures
all the prefix traces ending in ℓ and it is captured by the
least fixpoint of the function H ℓ I : ℘(T) → ℘(T), where T
corresponds to the set of (finite) prefix traces of the program,
i.e., T ≜

⋃
𝑛∈N M× (LabP×M)𝑛 . We represent a generic trace

𝜏 ∈ T as 𝜎0
ℓ1−→ 𝜎1

ℓ2−→ . . .
ℓ𝑛−1−−−→ 𝜎𝑛−1

ℓ𝑛−→ 𝜎𝑛 .

ℓ1input(x);
ℓ2input(y);
ℓ3 while (x > 0

&& y > 0) {
ℓ4 y = 2 * y;
ℓ5 x = x - 1;

ℓ6 }ℓ7

(a) Imp code.

1

2

3

4

5

6

7

input(x)

input(y)

x ≤ 0 || y ≤ 0 x > 0 && y > 0

y = 2 * y

x = x - 1

skip

(b) Corresponding CFG.

Figure 2. Example of CFG.

For instance, let us consider the example reported in Fig. 2a,
and let the initial memory for the program execution be
𝑚init ≜ (𝑥 ↦→ 0, 𝑦 ↦→ 0). Supposing that the user inputs 1
and 4 at program points ℓ1 and ℓ2, respectively, a possible
concrete trace reaching the program point ℓ5 is:

(𝑥 ↦→ 0, 𝑦 ↦→ 0) ℓ1−→ (𝑥 ↦→ 1, 𝑦 ↦→ 0) ℓ2−→ (𝑥 ↦→ 1, 𝑦 ↦→ 4)
ℓ3−→ (𝑥 ↦→ 1, 𝑦 ↦→ 4) ℓ4−→ (𝑥 ↦→ 1, 𝑦 ↦→ 8)

Note that, this definition slightly extends the maximal
trace semantics defined in Sect. 5 of [9], enriching the defini-
tion of the transition relation with the label corresponding
to the computational step.

4 The Stability Abstract Domain

The goal of the stability abstract domain is to infer, for each
program label, if a variable is increasing, decreasing or sta-
ble w.r.t. the previous label. We define such domain as a
functional lift from program variables to elements of the
complete lattice of per-variable trends:

Trn ≜ ⟨{⊥, ↑,=, ↓, ↑=,≠, ↓=,⊤}, ⊑Trn,⊔Trn,⊓Trn,⊥,⊤⟩.

A variable can thus increase strictly (↑) or non-strictly (↑=),
can decrease strictly (↓) or non-strictly (↓=), can remain sta-
ble (=), can become unstable (≠, the value is definitely differ-
ent but nothing more is known), or can have an unknown (⊤)
or erroneous (⊥, produced by error-raising computations)
trend. Least upper bound ⊔Trn, greatest lower bound ⊓Trn,
and partial order operator ⊑Trn definitions can be derived
from the Hasse diagram of Trn reported in Fig. 3.

The stability abstract domain tracks an element of Trn for
each variable through functional lifting [13]:

Stb ≜ ⟨VarsP → Trn, ⊑Stb,⊔Stb,⊓Stb,⊥Stb,⊤Stb⟩,

where the lattice operators are defined as element-wise ap-
plications of the operators of Trn. The bottom element ⊥Stb
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⊤

↓= ≠ ↑=

↓ = ↑

⊥

Figure 3. The Hasse diagram of Trn.

is the empty map,4 while the top element ⊤Stb is the map
where every variable is mapped to ⊤ ∈ Trn.

Example. If we were to analyze the snippet of Imp code in
Figure 2a using Stb, we would obtain a different Stb instance
at each location ℓ𝑖 . For instance, at ℓ2 we would obtain the
mapping {x ↦→ =} since x has just been defined. Instead, at ℓ6
Stb would compute the mapping {x ↦→ ↓, y ↦→ =} since y is
not modified by the assignment, while x has been decreased.

Abstraction and concretization. As required by the
framework of abstract interpretation, we define an abstrac-
tion and a concretization function for Stb. The abstraction
function 𝛼Stb : ℘(T) → Stb, mapping sets of prefix traces
to instances of Stb, is defined the lub of the abstraction of
individual traces:

𝛼Stb (𝑇 ) ≜
⊔
𝜏∈𝑇

{
𝑥 ↦→ 𝑠𝑡 (𝜏, 𝑥)

�� 𝑥 ∈ VarsP
}

𝛼Stb uses the auxiliary function 𝑠𝑡 : T×Vars𝑃 → Trn, where
𝜏 = . . . 𝜎𝑛−1

ℓ−→ 𝜎𝑛 , extracting the trend of a single variable:

𝑠𝑡 (𝜏, 𝑥) ≜

= if 𝜏 =𝑚init ∨ 𝜎𝑛−1 (𝑥) = 𝜎𝑛 (𝑥)
↑ if 𝜎𝑛−1 (𝑥) < 𝜎𝑛 (𝑥)
↓ if 𝜎𝑛−1 (𝑥) > 𝜎𝑛 (𝑥)

where we denote, abusing notation, as 𝜎 (𝑥) the value of
variable 𝑥 in the state 𝜎 . The abstraction function thus joins
the abstraction of each individual trace, that is, the trend of
each variable at the end of the trace w.r.t. the previous step.
Having defined 𝛼Stb as a union (and thus intuitively as

a join preserving function), we employ Prop. 7 of [14] to
define the concretization function 𝛾Stb : Stb → ℘(T) as
𝛾Stb (𝑠) =

⋃{𝑇 ∈ ℘(T) | 𝛼Stb (𝑇 ) ⊑Stb 𝑠}, inducing the
Galois connection ⟨℘(T), ⊆⟩ −−−−−−→←−−−−−−

𝛼Stb

𝛾Stb ⟨Stb, ⊑Stb⟩.

4.1 Stb Is Not Enough For Stability

Stability information cannot be inferred from any previous
knowledge of stability itself. In general, determining the
trend of a variable after a statement requires information
provided by some numerical domain. This becomes evident
when considering instructions such as x = x + y. To deduce
4As usual, given 𝑠 ∈ Stb, if ∃𝑥 ∈ 𝑑𝑜𝑚 (𝑠 ) . 𝑠 (𝑥 ) = ⊥ then 𝑠 ≡ ⊥Stb, that
is 𝑠 is normalized to the bottom element.

the the trend of x after the assignment, one needs to know
the sign of y, as its value might be, e.g., increasing even if
it is negative. Similarly, with x = 5 information about the
previous value of x is needed to compute the trend of x after
the assignment. In both cases, trend information on single
variables is irrelevant to reaching a conclusion.

In fact, to track stability through a program we require
an auxiliary numerical abstract domain. For this reason, we
define the abstract transformers for Stb w.r.t. an open prod-
uct [6] between Stb and a generic numerical domain A.
Intuitively, an open product is a form direct product (Chap-
ter 36 of [10]) between abstract domains where they can
interact through abstract queries in a domain-independent
fashion. This allows Stb to query information about values
of variables from A modularly, without tailoring its defini-
tion to a fixed auxiliary domain. We refer to such product
as Stb ⊗ A, and we express queries from Stb to A using a
function 𝑄 : A × be→ {true, false} (where the instance
of A used for the query will be a subscript) that given a
Boolean expression b yields true if b always holds.
Note that the choice of such a domain leads to different

levels of precision: if one uses the Sign abstract domain in
the second example (x = 5), knowing that x > 0 does not
provide enough information to deduce the trend of x.

4.2 Abstract Semantics

We present here the abstract semantics of the elements of
ImpCFG, followed by the semantics of arithmetic expressions.5
The semantics is defined on the open product Stb ⊗ A. Re-
garding A, we assume that its semantics is defined over ab-
stract states 𝑑♯, and that it provides (i) abstract transformers
for all statements in ImpCFG, (ii) an abstract evaluation func-
tion for Boolean expressions H b IA𝑑♯ = ℘({true, false}),
and (iii) an (optional) state refinement operator ⌊𝑑♯⌋b to be
applied when traversing a condition b.
Let𝑚♯ = (𝑠♯, 𝑑♯) ∈ M♯ ≜ Stb ⊗ A be the set of abstract

memories, modeled through instances of the open product be-
tween Stb andA. The abstract semantics of expressions over
Stb is the identity function (intuitively, stability information
only changes when a variable changes its value), and is thus
omitted. Figure 4 defines the function H st I : M♯ → M♯ to
capture the semantics of the elements of ImpCFG. skip prop-
agates the input memory, while the semantics of Boolean
expressions depends on the semantics of A: it returns the
error memory ⊥ if it never holds, otherwise it refines A us-
ing its state refining operator. 𝑥 = a and input(𝑥) perform
similarly, since they are the two Imp instructions changing
the value of a variable. We distinguish two cases: the defini-
tion of a new variable (𝑥 ∉ 𝑑𝑜𝑚(𝑠♯)), and the assignment to
an existing variable. In the former case, Stb records that the
variable is stable since there is no pre-existing value. In the

5We do not define the semantics of Boolean expressions since they are a
no-op for Stb, and the evaluation just updates A.
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H b I𝑚♯ =

{
⊥ if H b IA𝑚♯ = false

(𝑠♯, ⌊𝑑♯⌋b) otherwise

H input(𝑥) I𝑚♯ = (𝑠♯1 , H input(𝑥) IA𝑑
♯) H skip I𝑚♯ =𝑚♯

H𝑥 = a I𝑚♯ = (𝑠♯2 , 𝑑
♯

1 = H𝑥 = a IA𝑑♯)

𝑠
♯

1 =

{
𝑠♯ [𝑥 ←=] if 𝑥 ∉ 𝑑𝑜𝑚(𝑠♯)
𝑠♯ [𝑥 ← ⊤] otherwise

𝑠
♯

2 =

{
𝑠♯ [𝑥 ←=] if 𝑥 ∉ 𝑑𝑜𝑚(𝑠♯)
𝑠♯ [𝑥 ← ⨿(𝑥, a, 𝑑♯, 𝑑♯1 )] otherwise

Figure 4. Abstract semantics of Stb ⊗ A.

latter case instead, it updates the value for 𝑥 according to
its evolution. In the case of input(𝑥), since we do not have
information on the new value, 𝑥 is updated to ⊤. On assign-
ments, 𝑥 is updated using function ⨿ using information in
𝑑
♯

1 . Function ⨿ : VarsP ×ae×A ×A → Trn produces a new
trend for a variable exploiting information inA. We split the
definition of ⨿ depending on the contents of the right-hand
side of the assignment. In the following, we denote as e a
generic expression that is independent from the variable 𝑥
being assigned. Definitions of ⨿ should be interpreted as
lists of successive queries toA, reading the left-most column
first: the result of ⨿ is the trend corresponding to the first
satisfied query. We omit the case where all queries return
false and ⨿ returns ⊤.

Independent assignment. Let 𝑑♯2 = H𝑥 = 𝑒 IA (H𝑥 =

𝑥 IA𝑑♯). 𝑑♯2 contains information on the previous value of 𝑥
stored in 𝑥 . We define ⨿ as:

⨿(𝑥, e, 𝑑♯, 𝑑♯1 ) =

↑ if 𝑄

𝑑
♯

2
(𝑥 < 𝑥) ↑= if 𝑄

𝑑
♯

2
(𝑥 ≤ 𝑥)

↓ if 𝑄
𝑑
♯

2
(𝑥 > 𝑥) ↓= if 𝑄

𝑑
♯

2
(𝑥 ≥ 𝑥)

= if 𝑄
𝑑
♯

2
(𝑥 == 𝑥) ≠ if 𝑄

𝑑
♯

2
(𝑥 ! = 𝑥)

Addition. When a = 𝑥 + e (or equivalently a = e + 𝑥 ), we
can define ⨿ simply by inspecting the sign of e:

⨿(𝑥, 𝑥 +e, 𝑑♯, 𝑑♯1 ) =

↑ if 𝑄

𝑑
♯

1
(e > 0) ↑= if 𝑄

𝑑
♯

1
(e ≥ 0)

↓ if 𝑄
𝑑
♯

1
(e < 0) ↓= if 𝑄

𝑑
♯

1
(e ≤ 0)

= if 𝑄
𝑑
♯

1
(e == 0) ≠ if 𝑄

𝑑
♯

1
(e ! = 0)

Subtraction. When a = 𝑥 − e (or equivalently a = e − 𝑥 ),
we can define ⨿ by inspecting the sign of e:

⨿(𝑥, 𝑥−e, 𝑑♯, 𝑑♯1 ) =

↑ if 𝑄

𝑑
♯

1
(e < 0) ↑= if 𝑄

𝑑
♯

1
(e ≤ 0)

↓ if 𝑄
𝑑
♯

1
(e > 0) ↓= if 𝑄

𝑑
♯

1
(e ≥ 0)

= if 𝑄
𝑑
♯

1
(e == 0) ≠ if 𝑄

𝑑
♯

1
(e ! = 0)

Table 1. Chaining operator for Trn instances.

𝑡1

𝑡2 ⊥ ↑= ↑ = ≠ ↓ ↓= ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
↑= ⊥ ↑= ↑ ↑= ⊤ ⊤ ⊤ ⊤
↑ ⊥ ↑ ↑ ↑ ⊤ ⊤ ⊤ ⊤
= ⊥ ↑= ↑ = ≠ ↓ ↓= ⊤
≠ ⊥ ⊤ ⊤ ≠ ⊤ ⊤ ⊤ ⊤
↓ ⊥ ⊤ ⊤ ↓ ⊤ ↓ ↓ ⊤
↓= ⊥ ⊤ ⊤ ↓= ⊤ ↓ ↓= ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

Multiplication. When a = 𝑥 ∗e (or equivalently a = e∗𝑥 ),
⨿ becomes more intricate: it not only depends on the sign
of 𝑥 and e, but also on the magnitude of e. We thus define ⨿
by inspecting the sign of 𝑥 and by comparing e to 1:

⨿(𝑥, 𝑥 ∗ e, 𝑑♯, 𝑑♯1 ) =



= if 𝑄
𝑑
♯

1
(𝑥 == 0 | | e == 1)

↓ if 𝑄
𝑑
♯

1
(𝑥 < 0 && e > 1) ∨

𝑄
𝑑
♯

1
(𝑥 > 0 && e < 1)

↑ if 𝑄
𝑑
♯

1
(𝑥 < 0 && e < 1) ∨

𝑄
𝑑
♯

1
(𝑥 > 0 && e > 1)

↑= if 𝑄
𝑑
♯

1
(𝑥 ≤ 0 && e ≤ 1) ∨

𝑄
𝑑
♯

1
(𝑥 ≥ 0 && e ≥ 1)

↓= if 𝑄
𝑑
♯

1
(𝑥 ≤ 0 && e ≥ 1) ∨

𝑄
𝑑
♯

1
(𝑥 ≥ 0 && e ≤ 1)

≠ if 𝑄
𝑑
♯

1
(𝑥 ! = 0 && e! = 1)

4.3 Chaining Stability Information

Stb computes relations between values before and after the
execution of a single statement. This can be extended to a
relation before and after the execution of a block of statements,
over a whole function, or over the complete program. Trends
between two arbitrary points ℓ𝑖 and ℓ𝑗 in a function can be
derived by iteratively combining the per-instruction trends.
We define the binary operator ⋄ : Trn × Trn → Trn that,
given 𝑡1, 𝑡2 ∈ Trn, yields the sequential combination of the
two. The definition is given by Table 1, where rows and
columns are the possible values for 𝑡1 and 𝑡2, respectively.

Intuitively,⊥ and⊤ values are preserved by⋄, and⊤ is also
introducedwhenever 𝑡1 and 𝑡2 disagree on the direction of the
trend (i.e., when only one of them is ≠ or when 𝑡1 ∈ {↑, ↑=}
and 𝑡2 ∈ {↓, ↓=}, or vice versa). Instead, when they agree
in direction, the strongest (i.e., lower level on the lattice
structure) takes precedence, while = is the neutral element
(i.e., the other trend is returned). Note that using ⋄ instead
of ⊔Trn leads to higher precision: for instance, if the same
variable has trends ↑ and ↑= in two consecutive instructions,
⊔Trn would yield ↑= as an overall trend. Instead, thanks to ⋄,
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we are able to use ↑ as overall trend, since the final value is
surely greater than the starting one.

The combination of complete Stb instances is achieved by
element-wise application of ⋄: we denote such operation as
¤⋄. Moreover, given a chain of Stb abstract states 𝑠1, 𝑠2, . . . , 𝑠𝑛
produced at successive program locations ℓ1, ℓ2, . . . , ℓ𝑛 , their
combination is simply the iterative forward application of
¤⋄ (that is, 𝑠1 ¤⋄𝑠2 ¤⋄ . . . ¤⋄𝑠𝑛). Finally, when merging chained
stability information over different paths (e.g., at a loop exit),
the chained stability is computed using ⊔Stb.

4.4 Covariance and Contravariance

When combining Stb instances of a whole function, we ob-
tain the overall trend of a variable from its definition to the
function exit. While the trend itself is non-relational in na-
ture, it can be compared with the ones of other variables in
the same function to infer covariance or contravariance rela-
tions. In fact, it is possible to show that x and y in Figure 2a
are contravariant inside the loop body:
• at ℓ5, the state computed by Stb is {x ↦→ =, y ↦→ ↑};
• at ℓ6, the state computed by Stb is {x ↦→ ↓, y ↦→ =};
• applying the combination rules, we obtain a new Stb
instance covering the per-variable trends of the loop
body containing {x ↦→ ↓, y ↦→ ↑}, showing that the
variables are contravariant.

Note that, on this specific code, Stb can infer the contravari-
ance relation also using the weakest auxiliary domain A
possible, that is, the Sign domain.

5 Experiments

In this section, we demonstrate the capabilities of Stb step-
by-step on two sample functions: a simplified Imp form of
function send discussed in the introduction, and the Imp
code of Figure 2a. The results presented in this section have
been produced by a proof-of-concept implementation of
Stb in LiSA [20, 28],6 a Java library for building abstract-
interpretation based static analyzers [29–34]. Specifically,
our implementation targets programs written in IMP, a toy
language that LiSA uses for testing and demonstration, that
closely resembles the Imp language used in this paper.
We report here the abstract Stb states produced by the

analysis in blue. Each state can be read as both the pre-state
before the abstract execution of the next statement, and as
the post-state produced by the abstract execution of the
preceeding statement. Note that the state reported at the
beginning of loop bodies is the least upper bound of the state
preceeding the loop with the state after the last statement
of the body. The last line contains the combination of the
Stb instances from the start to the end of the function, by
applying the rules of Section 4.3, in red. In both cases, the
code is analyzed using the Sign domain as A.
6https://github.com/lisa-analyzer/lisa/tree/master/lisa/lisa-analyses/src/
main/java/it/unive/lisa/analysis/stability

1 H{}I
2 input(dest);
3 H{𝑑𝑒𝑠𝑡 ↦→ =}I
4 input(amount);
5 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =}I
6 input(sbalance);
7 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
8 input(dbalance);
9 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
10 if (amount > 0 && amount <= sbalance) {
11 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
12 sbalance = sbalance - amount;
13 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ ↓, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
14 dbalance = dbalance + amount;
15 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ ↑}I
16 } else {
17 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
18 skip;
19 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
20 }
21 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ =}I
22 H{𝑑𝑒𝑠𝑡 ↦→ =, 𝑎𝑚𝑜𝑢𝑛𝑡 ↦→ =, 𝑠𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ ↓=, 𝑑𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ↦→ ↑=}I

Figure 5. Analysis of the Imp version of function send.

The send function. Figure 5 reports the Imp version of
function send from the introduction. Specifically, we model
statically unknown values (the dest account, the amount of
money to be transferred, and the sender and receiver bal-
ances sbalance and dbalance) as user inputs. Moreover,
since Imp does not have require statements, the Boolean
predicates are encoded as an if condition guarding the ex-
ecution of the balances updates. The execution of the first
four inputs maps all variables to ⊤Sign by Sign, and to = by
Stb. Sign infers that amount is always positive inside the
true branch of the if, allowing the semantics of addition and
subtraction to infer that sbalance strictly decreases after
line 12, and dbalance strictly increases after line 14.
When chaining trends, Stb infers that sbalance is non-

increasing (↓=) and dbalance is non-decreasing (↑=). This
is due to the join happening after the if, where the false
branch did not modify any variables. Such an imprecision
is due to our instrumentation of the code: if Imp allowed
halting, we sould be able to remove this spurious branch to
closely resemble the Solidity code, and the balances would
be correctly inferred to be decreasing (↓) and increasing (↑),
respectively, showing contravariance between the two.

The Imp example. The code of the Imp example from Fig-
ure 2a, together with the states computed by Stb, is visible
in Figure 6. The execution of the first two input maps x
and y to ⊤Sign by Sign, and to = by Stb. The condition of
the while loop enables Sign to determine that x and y are
both positive, and in turn to the semantics of addition and
subtraction of Stb to infer that y strictly increases after line
8, and x strictly decreases after line 10.
When chaining trends, Stb labels x as non-increasing

(↓=) and y as non-decreasing (↑=) after the loop. Note that
the chaining operation at the end of the loop body yields
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1 H{}I
2 input(x);
3 H{𝑥 ↦→ =}I
4 input(y);
5 H{𝑥 ↦→ =, 𝑦 ↦→ =}I
6 while (x > 0 && y > 0) {
7 H{𝑥 ↦→ ↓=, 𝑦 ↦→ =}I
8 y = 2 * y;
9 H{𝑥 ↦→ =, 𝑦 ↦→ ↑}I
10 x = x - 1;
11 H{𝑥 ↦→ ↓, 𝑦 ↦→ =}I
12 }
13 H{𝑥 ↦→ =, 𝑦 ↦→ =}I
14 H{𝑥 ↦→ ↓=, 𝑦 ↦→ ↑=}I

Figure 6. Analysis of the Imp example from Figure 2a.

{𝑥 ↦→ ↓, 𝑦 ↦→ ↑}: knowing that x always decreases at each
iteration is enough to prove that the loop will eventually
terminate. To the best of our knowledge, this result would
not be possible with any other numerical domain.7

6 Related Work

Static analyses for numerical properties using (weakly) re-
lational abstract domains are sometimes used to track the
relations between the program variables and other values
that are not directly represented in the considered program:
for instance, auxiliary (ghost) variables can be introduced to
track the size of memory allocations or the computational
cost of a specific chunk of code; when considering floating
point computations [24], auxiliary variables can be used to
model the real value semantics so as to try and bound its
distance from the floating point semantics. Anyway, these
analysis do not directly track the relations between the val-
ues at different program points. They might, however, be
employed on an SSA translation [22] of the program, en-
abling comparison between variables at different program
points at the cost of increased computational cost.
When implementing interprocedural analyses using re-

lational domains, the relations between the entry and exit
values of program variables can be computed and stored
in function summaries [12, 21, 35]. These, however, are not
really meant to detect numeric variable trends, covariance
and contravariance properties; as a consequence, they may
fail to provide this kind of information if the relation holding
between entry and exit values does not fit the considered
abstract domain (e.g., when using a domain of linear con-
straints and trying to model a nonlinear increment). Simi-
larly, static analyses syntesizing ranking functions for termi-
nation [2, 15, 39] relate the value of program variables at the
beginning and at the end of a loop body to find an expression
that definitely decreases, which can be interpreted as the
search for a rather specific numeric trend.
7While dedicated termination analyses can prove the loop termination, con-
travariance would not be inferred. Moreover, termination analyses typically
have higher computational requirements w.r.t. the ones of Stb.

The analysis proposed in [18] is meant to compare the
semantics of slightly different versions (an original version
and a patched one) of some function of interest. This work
shares with the current one the need to compute relations
between variables defined at different program points; how-
ever, it differs from the current proposal in its main goal:
proving that the values computed in the two versions of the
program are identical, instead of establishing value trends.
Lastly, the domain presented in Section 4.2 of [26] de-

duces monotonicity of program variables taking into account
thread interferences, and also needs information about the
sign of expressions. Our analysis is instead able to determine
trends beyond simple monotonicity, but shares the approach
of querying information from a numerical abstraction.

7 Conclusion

In this paper, we presented a novel abstract domain for infer-
ring trends of numerical variables, able to recover informa-
tion in situations where even strong relational domains fail.
We provided a formalization of the domain and its abstract
semantics, and showed the properties it can infer on two
sample functions. As this work is still in its initial phase,
we plan on exploring several possible applications: anomaly
detection, floating-point errors propagation, and validation
of functional requirements. On the formal side, we are cur-
rently working on soundness proofs and on providing an
abstract semantics for more arithmetic operations.
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