
SARL: OO Framework Specification for Static
Analysis

Pietro Ferrara1 and Luca Negrini2,1

1 Ca’ Foscari University of Venice, Italy pietro.ferrara@unive.it
2 JuliaSoft SRL, Verona, Italy luca.negrini@juliasoft.com

Abstract. Semantic static analysis allows sound verification of program
properties, that is, to prove that a given property holds for all possible
executions. However, modern object-oriented applications make heavy
use of third-party frameworks. These provide various functionalities (like
libraries), as well as an extension of the execution model of the program.
Applying standard models to statically analyze software relying on such
frameworks could be potentially unsound and imprecise.
In this paper we introduce SARL, a domain-specific language which allows
one to specify the runtime behaviors of frameworks of object-oriented
programs. Such specifications can be then applied to automatically gen-
erate annotations on program components of the application to model the
framework runtime environment. In addition, SARL specifications docu-
ment which aspects of a framework are supported by the static analyzer
and how. We adopted SARL to model WindowsForms and ASP.NET, two
of the most popular .NET frameworks in an existing industrial static an-
alyzer (Julia). We then analyzed the three most popular GitHub repos-
itories using these frameworks, comparing the results with and without
SARL. Our experimental results show that the application of SARL sensibly
improved the precision and soundness of the analysis without affecting
its runtime performances.

1 Introduction

Static analysis allows one to prove properties of computer programs without
executing them. Such properties vary from the absence of runtime errors to
functional correctness.

Object-oriented software makes extensive use of third party libraries and
frameworks, avoiding the re-implementation of common functionalities in favor
of reusable and highly tested code already widely used. In object-oriented soft-
ware, a library is a collection of classes, methods, etc. that implements some
standard functionalities, and that can be called by the application. Instead,
software frameworks represent a wider concept: “A software framework provides
a standard way to build and deploy applications. (...) Software frameworks may
include support programs, compilers, code libraries, tool sets, and application pro-
gramming interfaces (APIs) which bring together all the different components to
enable development of a project or system.” [25]. Frameworks have been applied

to various contexts. For instance, ASP.NET [9] allows a developer to imple-
ment and deploy a web application, while WindowsForms [14] is designed to
easily build desktop applications with modern UIs. Therefore, each framework
provides a specific execution model.

Static analyzers may raise alarms on generated code or specific framework
components, since these usually follow non-standard patterns that are hardly
detectable by and might confuse the analyzers. Moreover, frameworks often offer
ad-hoc execution models, that might rely on specific configuration files. Not being
aware of these behaviors might lead to unsoundly ignoring relevant portions of
the application code, or to consider too many methods as candidates for the
reflective calls to preserve soundness.

Nowadays, there are dozens of software frameworks (like Spring and Lombok
in Java, or ASP.NET and WindowsForms in C#), each one with its own execu-
tion model, and new ones keep emerging. This represents a challenge for static
analyzers, since customers expect the analysis to be up-to-date with modern
technologies, while the effort of modeling even a single framework might not be
negligible. Furthermore, to keep amplifying the range of supported frameworks,
there is the need for a flexible mean to model new ones, as well as to improve the
knowledge of the analyzer on already-known frameworks. Finally, new versions
of the same framework might require different models. It is therefore essential
to document which parts of a framework are supported and how to keep the
models updated when new versions are released.
Contribution In this paper we present SARL (Static Analysis Refining Lan-
guage), a domain-specific language which allows one to easily instruct a static
analyzer about the execution model of a framework to improve the results in
terms of both precision and soundness. SARL targets statically type-safe, object-
oriented programming languages (C# and Java in particular). These languages
offer a construct which allows to add metadata to object-oriented components,
describing their characteristics. We will generically refer to it as annotation.

SARL adopts annotations as the key mean to instruct the analyzer about
both the structure and the execution model of the application under analysis.
The goal of SARL is to produce a set of rules, called framework specification, that
describes the behavior of a framework. Such description is then automatically
applied to a program to produce a collection of annotations on it that the static
analyzer is able to interpret and exploit during the analysis (e.g., when building
the call graph of the program or approximating the heap structure).

Since we want to apply the SARL specification and extract the annotations on
the target application before the analysis starts, framework specifications must
be evaluated syntactically on the analyzed application without any semantic
knowledge of the program. At this stage, no information about the dynamic
types of the program’s values is known, as well as the effective targets of methods
calls. Hence, the content of framework specifications needs to be designed using
static types and call targets.

SARL has been interfaced with Julia, an abstract interpretation based static
analyzer of Java bytecode whose analyses consider a wide range of annotations.

2

Born as a Java analyzer, Julia has been recently extended to analyze .NET (CIL)
bytecode as well [13].

Therefore, we applied SARL to model two popular .NET frameworks (Win-
dowsForms and ASP.NET), and we present, for each of these frameworks, the
results of Julia analyses on the 3 most popular GitHub repositories of projects
relying on these frameworks. In particular, we study how the analysis improved
in terms of precision and soundness when using the SARL specification w.r.t.
the original Julia analysis. The experimental results show that for programs
widely relying on a framework (WindowsForms) the improvement is dramatic
(SARL specification removed between 35.3% and 74.5% of false alarms), while
when only a small portion of a program exploits a framework (ASP.NET) the
benefit is restricted to that (between 1.6% to 4.3%). Moreover, since SARL speci-
fications collect all framework support into a single file, a readable representation
of what has been covered and how can be easily generated. Julia includes this
representation as part of its own documentation3.

The rest of the paper is structured as follows. Section 1.1 reports a first ex-
ample of a SARL specification modeling ASP.NET. Section 2 discusses the related
work, while Section 3 reports the overall architecture of the Julia static analyzer.
Section 4 introduces another specification, targeting WindowsForms, and uses
it to describe all the constructs of SARL, together with its complete grammar.
Section 5 reports the benefits obtained when applying SARL specifications to six
applications using WindowsForms and ASP.NET, while Section 6 concludes.

1.1 Example SARL specification

Consider the specification for the ASP.NET [9] framework contained in Fig-
ure 1, where namespaces have been omitted for the sake of compactness. ASP.NET
is a Microsoft framework used to build web applications written in C#. It comes
in various flavors, like WebForms and MVC. As most web application frame-
works, applications written with ASP.NET have an execution model fairly dif-
ferent from the one of a standard application. In fact, a wide variety of methods
are invoked from the external environment, such as page and graphical event
handlers. This means that a static analyzer would not find explicit calls to these
methods, considering them (as well as all other methods invoked directly or indi-
rectly) as not reachable. Moreover, graphical objects are usually stored in fields,
enabling the runtime environment to access them for initialization. Since those
interactions are not part of the program, a static analyzer might suggest to re-
place those fields with local variables (if it is referenced in only one method), or
to remove them completely (if no explicit accesses are found in the code). The
specification of Figure 1 describes both these features (as well as marking few
other methods as reachable), providing metadata (as annotations supported by
Julia), in a concise and self-explanatory manner: it is applied when a .NET pro-
gram contains at least one HttpApplication, which is the base class for ASP.NET
applications (lines 1 and 2). Then, fields representing runtime-managed objects
3 https://static.juliasoft.com/docs/2.7.0.3/frameworks.html

3

https://static.juliasoft.com/docs/2.7.0.3/frameworks.html

1 rule: rte ”.net”
2 rule: superclass HttpApplication
3 predicate: isControl = cls −> subtypeOf:: ”Control”
4 predicate: isNestedComponent = and(fld −> type satisfies isControl, fld −>

definingClass satisfies isControl)
5 predicate: isEventHandler = and(mtd −> basicReturnType:: ”void”, and(mtd −>

numberOfParameters:: 2, and(mtd −> hasParameter and(par −> index:: 0, par
−> type:: ”Object”), mtd −> parameter and(par −> index:: 1, par −> type.
subtypeOf:: ”EventArgs”)))))

6 predicate: isWebViewExecute = and(mtd −> basicReturnType:: ”void”, mtd −> name
:: ”Execute”)

7 predicate: isGetAppInstance = and(mtd −> returnType.subtypeOf:: ”HttpApplication”,
mtd −> name:: ”get ApplicationInstance”)

8 specification: annotate mtd with EntryPoint if and(mtd −> definingClass satisfies
isControl, satisfies isEventHandler)

9 specification: annotate fld with ExternallyRead, Injected if satisfies isNestedComponent
10 specification: annotate mtd with EntryPoint if and(mtd −> definingClass.subtypeOf::

”WebPageExecutingBase”, and(mtd −> numberOfParameters:: 0, or(satisfies
isWebViewExecute, satisfies isGetAppInstance)))

11 specification: annotate mtd with EntryPoint if and(mtd −> definingClass::startsWith ”
ASP.FastObjectFactory”, and(mtd −> name::startsWith ”Create ASP ”, and(

mtd −> returnType:: ”System.Object”, mtd −> numberOfParameters:: 0)))

Fig. 1. ASP.NET specification

(subtypes of the Control class) are identified and marked (line 9) as externally
read and written (that is, injected), while event handlers, web page creation
factories, and other standard framework methods are considered as entry point
(lines 10-11).

This information is needed in order to build up a sound approximation of
the execution of ASP.NET applications. For instance, event handlers are usually
not public, but they are implicitly executed by the framework. Therefore, these
methods would be considered as unreachable by a semantic static analyzer, po-
tentially leading to both false positives (e.g., warnings about unreachable event
handlers) and negatives (e.g., missing warnings on the code implementing of the
event handler). Instead, by annotating them as entry points, SARL instructs the
analyzer (and the call graph constructor in particular) to consider them as exter-
nally called with arbitrary values. In this way, the analysis will produce alarms
on the code directly or indirectly executed by the method (removing false neg-
atives), and remove warnings about unreachable event handlers (removing false
positives). Similarly, ASP.NET stores objects representing UI components in
(usually private) fields that are written and read by the framework itself. Usu-
ally such fields are never written in the application, and sometimes not even
read. For instance, in the first case, a semantic static analyzer would consider
these fields as always null, potentially producing both false positives (e.g., null-
ness alarms when the object stored in the field is dereferenced) and negatives
(e.g., on the code of a branch of an if-then-else statement that is guarded by
a nullness check on the field, thus considered as deadcode). These imprecisions

4

of the analysis are removed once these fields are annotated as externally writ-
ten (injected), since the analyzer will consider that they might be assigned with
arbitrary values.

As one can see from this brief example, SARL allows to easily specify to which
programs the specification should be applied, a set of predicates (improving the
readability and reusability of the specification), and a set of specification rules to
annotate program components as well as libraries. This specification will later be
used in Section 5 to refine the results of Julia on applications that use ASP.NET.

2 Related work

Several static analyzers, like Julia and FindBugs [15] allow a developer to in-
struct the analysis about specific runtime behaviors of a framework through
annotations. The goal of SARL is to automatically produce these annotations
and apply them to the code under analysis. In this way, SARL decouples the
framework specification from the program.

Specification languages such as the Java Modeling Language [17] allow to
specify pre- and post-conditions and object invariants following the design-by-
contract methodology. Different verification tools can then check if the program
satisfies the given specification. Therefore, these languages are aimed at spec-
ifying the properties of interests that one might want to check on a program,
rather than the behavior of frameworks (that is the goal of SARL).

SLIC is a specification language developed about two decades ago “designed
to specify the temporal safety properties of APIs implemented in the C pro-
gramming language” [10]. Similarly to SARL, SLIC was designed to specify the
behavior of libraries, and in particular safety temporal requirements of the APIs.
Instead, SARL is focused towards object-oriented frameworks that might both
provide external libraries and modify the runtime execution model of the pro-
gram, and it targets various safety and security properties of such programs.

Previous works [11,23] relied on hardcoded knowledge of specific framework
features, hence building an a priori model for each framework. However, handling
new frameworks required a modification of the analysis engine, expanding both
the size and complexity of the product and requiring a developer with expertise
both in the framework itself and on static analysis. Moreover, this solution did
not provide a fast and reliable way for supporting new software frameworks,
and it did not document which features of a specific framework are taken into
account by the analysis and how.

More recent works exploited a framework’s configuration files. These files of-
ten restrict the possible executions, allowing to (almost always) precisely resolve
the targets of reflective calls in the framework. F4F [22] aimed at building an
application-specific model of the framework’s behavior automatically, and this
can be used by the analysis to react accordingly to modifications of the execu-
tion model made by the framework itself. However, building a model generator
for each framework does not keep the actual pace of releases of new frameworks,
and each analysis needs to be modified to be model-aware during its execution.

5

Concerto [16] combined mostly-concrete interpretations of the framework code
and abstract interpretation of application code, providing sound and accurate
analysis on the overall program. Both of the above approaches targeted frame-
works whose behavior depends on some application-specific configuration files,
and that is not the case for any framework. Moreover, the code from the frame-
work itself needs to be submitted to the analysis, and this will eventually slow
down the analyzer due to the significantly larger amount of code to analyze. Also
notice that, if the format of the configuration file changes among different ver-
sions of the same framework, a new parser for such a file must be built, and the
logic of the newly introduced constructs must be embedded into the analyzer.

StubDroid [8] built up data flow summaries of Android libraries for taint an-
alyzers. If on the one hand such approach is completely automatic, on the other
hand it is specific for taint analysis and it required an ad-hoc static analysis in or-
der to infer the data flow summaries. While SARL framework specifications might
be automatically inferred with static and dynamic analyses, this is not the focus
of this paper and is left as future work. Averroes [7] introduced a new approach
that, starting from the code of application and libraries, built up a placeholder
library that soundly approximates the library behaviors. The construction of the
placeholder library relied on the separate compilation assumption, and it han-
dles reflection. Such an approach sensibly improved the efficiency of the analysis
without affecting its precision and soundness. However, more recent frameworks
rely on ad-hoc runtime environments that extends the execution model of the
programming languages. These runtime environments are outside the code of
the library, and therefore they cannot be handled with this approach.

3 Julia

Julia’s analyses are interprocedural (that is, they consider the flow of control
and information from callers to callees and vice-versa) and abstract the heap
(that is, they consider the flow of data through heap writes and reads). This is
essential to perform semantic static analyses, such as information flow or sound
nullness analysis.

In Julia, the model of the program under analysis is built by a so-called class
analysis, that infers the possible runtime dynamic types of the variables and
stack elements. Julia uses the one defined in [19], which has been shown to be a
reasonable trade-off between precision and cost. The construction of such model
of the program is called extraction in Julia, since methods are extracted and
then analyzed only if they are actually called in the program. The extraction
starts from a set of entry points, that, by default, are all the public methods
of the analyzed application. However, as an input of the analysis the user can
specify other entry point modes, and in particular (i) only standard entry point
methods (e.g., main and servlet methods), (ii) only explicit entries (that is,
methods annotated as @EntryPoint), or (iii) all public and protected methods.
For the sake of simplicity, in the rest of the paper we consider only the default

6

mode. Julia includes various static analyses (e.g., sound nullness analysis [20],
taint analysis [12] and data-size analysis [21]).

Being born as a Java analyzer, Julia acquired knowledge on widespread Java
frameworks during the years. However, frameworks behaviors have been hard-
coded throughout various analysis components, making it hard to understand
and document which aspects of each framework has been covered and how. In-
stead, Julia has no hardcoded model for C# frameworks. Thus, our initial effort
targets this area.
Annotations As of version 2.7.0.3, Julia defines more than 70 annotations with
various meanings4. Some of them are used to provide context about how the
application interacts with the external environment (e.g., @EntryPoint states
that a method could be called from outside the program, while @Injected states
that a field or a parameter could be written by an external source), while the
majority of them are used to provide information to a specific checker (e.g.,
@SqlTrusted is used to instruct the Injection checker that untrusted data should
not flow into that location since it will end up in a database, while @NonNull
states that a field or a method’s return value are never null). Finally, @Sup-
pressJuliaWarnings instructs Julia that a certain kind of warning should not be
reported on the annotated component (either a field, method, constructor, class,
method parameter, or local variable).

Each annotation has a different scope, and thus, a different impact on the
analysis: @EntryPoint will be exploited during the construction of the call graph,
but its effect will be propagated throughout the whole analysis (i.e., additional
reachable code will be considered); @SqlTrusted instead will only be used during
the execution of the taint analysis based checkers (the Injection checker is the
most popular, but other ones exist). Thus, a framework specification could be
logically split into sections, each one having effects on a different set of checkers.

4 The SARL Language

The goal of SARL is to allow a user to specify a set of rules (called framework
specification) representing how the framework affects the runtime behavior of a
program. Such specification will then be exploited by a static analyzer to im-
prove its precision and soundness. In particular, we rely on annotations to pass
this information. Therefore, these should be expressive enough to represent these
runtime behaviors. Throughout this paper, we need annotations to specify: (i)
when a method might be called by the framework runtime (@EntryPoint in
Julia), (ii) when a field is read or written by the framework runtime (@External-
lyRead and @Injected in Julia), (iii) when the warnings on a specific component
(e.g., method or field) should be suppressed (@SuppressJuliaWarnings in Ju-
lia, @SuppressWarnings in Java), and (iv) properties related to specific analyses
(e.g., @AutoClosedResource of the CloseResource analysis in Julia).

4 The documentation of the available annotations is available at https://static.
juliasoft.com/docs/2.7.0.3/annotations.html

7

https://static.juliasoft.com/docs/2.7.0.3/annotations.html
https://static.juliasoft.com/docs/2.7.0.3/annotations.html

Fig. 2. Schema of Julia’s architecture with SARL

Building a framework specification can be achieved with two different ap-
proaches. One can acquire knowledge about the framework itself, understanding
its model of execution and how it interacts with the application code. Then, the
acquired knowledge needs to be converted into a SARL specification, by under-
standing how each framework feature may impact the various analysis modules.
While this approach ensures that every peculiarity of the framework has been
taken into account, the number and heterogeneity of software frameworks makes
it hard to achieve, since one should possess knowledge on both the analyzer
and the framework. Another approach consists into iteratively analyzing soft-
ware that rely on the target framework, inspecting the analysis results searching
for evidence of the lack of framework knowledge by the analyzer (e.g., unreach-
able methods that are instead invoked by the framework, no injection-related
warning on a web application, . . .) and fixing them in the specification. This
approach is highly dependent on how representative the software is in exploiting
the framework’s functionalities, but can nevertheless be a good starting point.
Both SARL instances presented in this paper have been built following the latter
approach.

Figure 2 depicts the overall architecture of our approach, and how this in-
terfaces with the Julia static analyzer. Given a framework specification and an
application to be analyzed, the SARL engine (represented inside the dotted rect-
angle) produces a set of annotations. These are then serialized to an XML file
and passed together with all the other inputs of the analysis (analyzed code,
analysis options and checkers to run) to the analyzer. Further developments will
bring the SARL engine inside the analyzer itself, making the identification of

8

1 rule: rte ”.net”
2 rule: superclass Form
3 predicate: isComponent = cls −> subtypeOf:: ”IComponent”
4 predicate: isDisposable = fld −> type.subtypeOf:: ”IDisposable”
5 predicate: isNestedComponent = and(fld −> type satisfies isComponent, fld −>

definingClass satisfies isComponent)
6 predicate: isGeneratedFormField = and(fld −> definingClass.subtypeOf:: ”

ContainerControl”, and(fld −> hasAccessor:: ”private”, and(fld −> name:: ”
components”, fld −> type.subtypeOf:: ”IContainer”)))

7 specification: annotate fld with ExternallyRead, Injected if satisfies isNestedComponent
8 specification: annotate fld with AutoClosedResource if or(fld −> type.subtypeOf:: ”

ContainerControl”, and(satisfies isDisposable, fld −> definingClass satisfies
isComponent))

9 specification: annotate fld with NonNull, ExternallyRead, Injected if satisfies ”
isGeneratedFormField”;

10 library: annotate mtd with ResourceThatDoesNotNeedToBeClosed if cls Brushes mtd
matches ”get .∗()LSystem/Drawing/Brush;”

11 library: annotate mtd with ResourceThatDoesNotNeedToBeClosed if cls Pens mtd
matches ”get .∗()LSystem/Drawing/Pen;”

12 library: annotate mtd with ResourceThatDoesNotNeedToBeClosed if cls Process mtd ”
GetCurrentProcess()LSystem/Diagnostics/Process;”

Fig. 3. WindowsForms specification

frameworks and the generation of extra annotations a fixed step of the analysis
lifecycle.

Running example: Windows Forms Before discussing SARL formally, we in-
troduce another SARL specification targeting WindowsForms [14], a framework
to build GUIs of C# desktop applications. Usually, these are developed through
the designer included in Visual Studio, which places a pointer to each graphical
component in private fields initialized by the generated code, causing the ana-
lyzer to raise a high number of warnings about field usage (stating that a field
can be replaced by a local variable, or that the value written inside a field is
never read later). Moreover, each graphical component in WindowsForms imple-
ments the IDisposable interface (which represents objects that should be disposed
when no longer needed, since they could hold handles to non-managed resources
that needs to be manually released) and it is disposed by the framework run-
time. Figure 3 reports the specification of WindowsForms (as in Section 1.1,
namespaces have been omitted for compactness), that will be used to explain
SARL constructs.

Language Definition SARL is built over five basic components: rules, implica-
tions, specifications, predicates, and library specifications. Rules embed informa-
tion to detect if a given application relies on the framework. The specification is
applied if and only if the condition specified in the rules holds. Core components
(implications, specifications and predicates) allow one to define the conditions
required to apply an annotation to a program member. Finally, library speci-

9

General structure
⟨SARL⟩::=⟨RULES⟩

(⟨IMPL⟩
| ⟨PREDICATE⟩
| ⟨SPEC⟩
| ⟨LIB⟩)*

⟨RULES⟩::=(rule: (⟨RULE RTE⟩ |
⟨RULE CODE⟩))*

⟨RULE RTE⟩::=⟨R RTE⟩
⟨RULE CODE⟩::=⟨R ANN⟩

| ⟨R SUPER⟩
| ⟨R TYPE⟩

⟨IMPL⟩::=implication: ⟨ANN⟩
implies ⟨ANN⟩ (,⟨ANN⟩)*

⟨PREDICATE⟩::=predicate: ⟨ID⟩ = ⟨C CHAIN⟩
⟨SPEC⟩::=specification: annotate ⟨T⟩ with ⟨ANN⟩

(, ⟨ANN⟩)* if ⟨C CHAIN⟩
⟨LIB⟩::=library: annotate ⟨T⟩

with ⟨ANN⟩ (,⟨ANN⟩)*
if ⟨SIG⟩

Rules
⟨R RTE⟩::=rte (⟨R OP⟩)? ⟨STRING⟩
⟨R ANN⟩::=annotation (⟨R OP⟩)? ⟨QNAME⟩

⟨R SUPER⟩::=superclass (⟨R OP⟩)? ⟨QNAME⟩
⟨R TYPE⟩::=uses type (⟨R OP⟩)? ⟨QNAME⟩

Conditions
⟨C CHAIN⟩::=⟨NT TYPE⟩ ->

⟨NT OP⟩(⟨OPT⟩)?.⟨NT COND⟩
| ⟨T TYPE⟩ -> ⟨T OP⟩ ⟨VALUE⟩ | ⟨L COND⟩

⟨L COND⟩::=| satisfies ⟨ID⟩ | not(⟨C CHAIN⟩)
| and(⟨C CHAIN⟩,⟨C CHAIN⟩)
| or(⟨C CHAIN⟩,⟨C CHAIN⟩)

⟨NT COND⟩::=⟨NT OP⟩ . ⟨NT COND⟩
| ⟨NT OP⟩⟨OPT⟩::⟨T COND⟩
| (⟨NT OP⟩)?::⟨T COND⟩
| ⟨NT OP⟩⟨L COND⟩

⟨T COND⟩::=(⟨T OP⟩)?⟨VALUE⟩
⟨OPT⟩::=[⟨ID⟩]

Targets
⟨T⟩::=cls | fld | mtd | par

⟨SIG⟩::=cls ⟨QNAME⟩ (fld ⟨T OP⟩ ⟨STRING⟩
| mtd ⟨T OP⟩ ⟨STRING⟩

(par ⟨NUMBER⟩)?)?
Types

⟨NT TYPE⟩::=cls | ann | par | var | mtd | fld
⟨T TYPE⟩::=str | int

Operators
⟨R OP⟩::=equals | startsWith | endsWith | contains
⟨T OP⟩::=equals | startsWith | endsWith

| contains | matches
⟨NT OP⟩::=definingMethod | name | index | type

| basicType | hasAnnotation
| definingClass | returnType
| basicReturnType | hasVariable
| hasAccessor | hasOptionValue
| hasParameter | subtypeOf
| containsMethod | containsField
| numberOfParameters

Program members identifiers
⟨ANN⟩::=⟨QNAME⟩ ((⟨MEMBER⟩

(, ⟨MEMBER⟩)*))?
⟨MEMBER⟩::=⟨ID⟩ = ⟨STRING⟩

⟨QNAME⟩::=⟨ID⟩ (. ⟨ID⟩)*
⟨ID⟩::=[a-zA-Z] | [a-zA-Z]([a-zA-Z0-9])*

Values
⟨VALUE⟩::=⟨STRING⟩ | ⟨NUMBER⟩

⟨STRING⟩::=“ .* ”
⟨NUMBER⟩::=0 | [1-9]([0-9])*

Fig. 4. SARL’s grammar

fications allow to generate annotations also on non-application classes (that is,
classes that come from a supporting library or the system runtime).

Figure 4 defines the complete syntax of SARL, while Figure 5 formalizes the
semantics of the various components. During the formalization, we consider a
program p as a set of classes; each class is a tuple (n, A, F, C) where n is the name
of the class, while A, M and F are the set of annotations, fields and methods
of the class, respectively. An annotation is a tuple (n, ℘(n × str)), with n being
a full qualified name and ℘(n × str) being the set of members, represented as a
pair of name and string value. A field is a tuple (n, t, A, ℘(str)), where n is the
name, t is the type, A is the set of annotations, and ℘(str) is the set of accessors.
A method is a tuple (n, t, A, ℘(str), P, V), where n is the name, t is the return
type, A is the set of annotations, ℘(str) is the set of accessors, P is the set of
parameters, and V is the set of local variables. A parameter is a tuple (n, t, A, i),
with n being the name, t being the type, A being the set of annotations, and
i being the index of the parameter. A variable instead is a pair (n, t) with n
being the name and t being the type. Each element of the formalization could
be subscripted with a letter stating if it refers to a class c, a field f, a method
m, or a parameter p.

The semantics, that will be discussed in the rest of this section, relies on a
set of standard operators over the different object-oriented program components
informally defined in Tables 6 and 7 in Appendix A. For the sake of simplicity,
from now on we denote with ⟨XS⟩ sequences or sets of ⟨X⟩ components.
Rules A rule ⟨RULE⟩ defines a condition to be satisfied to apply a specifica-
tion. Rules express conditions on either the analysis ⟨RULES RTE⟩, or the code
⟨RULES CODE⟩. Rules semantics is defined in the first five definitions of Fig-

10

hold((⟨RULES RTE⟩, ⟨RULES CODE⟩), p) ⇔

{
⟨RULES RTE⟩ = ∅ ∨ ∃r ∈ ⟨RULES RTE⟩ : hold(r, p)
∧
⟨RULES CODE⟩ = ∅ ∨ ∃r ∈ ⟨RULES CODE⟩ : hold(r, p)

hold(⟨R RTE⟩, p) ⇔ holdString(extractRTE(p) ⟨R OP⟩ ⟨STRING⟩))
hold(⟨R ANN⟩, p) ⇔ ∃n ∈ extractAnn(p) : holdString(n ⟨R OP⟩ ⟨QNAME⟩))
hold(⟨R SUPER⟩, p) ⇔ ∃n ∈ p : n′ ∈ extOrImpl(n) : holdString(n′ ⟨R OP⟩ ⟨QNAME⟩))
hold(⟨R TYPE⟩, p) ⇔ ∃n ∈ extractType(p) : holdString(n ⟨R OP⟩ ⟨QNAME⟩))

impl(⟨IMPL⟩, p) =
⋃

(nc,Ac,F,M)∈p

(nc, Ac ∪ ann(Ac, ⟨IMPL⟩), F ′, M′) :

F ′ =
⋃

f∈F

(nf , tf , Af ∪ ann(Af , ⟨IMPL⟩), Cf),

M′ =
⋃

m∈M

{
(nm, tm, Am ∪ ann(Am, ⟨IMPL⟩), Cm, P ′

m, Vm) :

P ′
m =

⋃
p∈Pm

(np, tp, Ap ∪ ann(Ap, ⟨IMPL⟩), ip)}

}

ann(A, ⟨ANN⟩ implies ⟨ANNS⟩) = A ∪
{

∅ if ⟨ANN⟩ /∈ A
⟨ANNS⟩ if ⟨ANN⟩ ∈ A

lib(⟨LIB⟩, p) =
⋃

(nc,Ac,F,M)∈p

(nc, Ac ∪ addLA(⟨LIB⟩, nc), F ′, M′) :

F ′ =
⋃

f∈F

(nf , tf , Af ∪ addLA(⟨LIB⟩, f), Cf),

M′ =
⋃

m∈M

{
(nm, tm, Am ∪ addLA(⟨LIB⟩, m), Cm, P ′

m, Vm) :

P ′
m =

⋃
p∈Pm

(np, tp, Ap ∪ addLA(⟨LIB⟩, p), ip)}

}

addLA(⟨LIB⟩, s) =
{

⟨ANNS⟩ if typeOf (s) = ⟨T⟩ ∧ checkSignature(s, ⟨SIG⟩)
∅ otherwise

spec(⟨SPEC⟩, p) =
⋃

(nc,Ac,F,M)∈p

(nc, Ac ∪ cond(⟨SPEC⟩, (nc, Ac, F, M)), F ′, M′) :

F ′ =
⋃

f∈F

(nf , tf , Af ∪ cond(⟨SPEC⟩, f), Cf),

M′ =
⋃

m∈M

{
(nm, tm, Am ∪ cond(⟨SPEC⟩, m), Cm, P ′

m, Vm) :

P ′
m =

⋃
p∈Pm

(np, tp, Ap ∪ cond(⟨SPEC⟩, p), ip)}

}

cond(⟨SPEC⟩, s) =
{

⟨ANNS⟩ if typeOf (s) = ⟨T⟩ ∧ chain(s, ⟨C CHAIN⟩)
∅ otherwise

Fig. 5. Semantics of SARL statements, where < i >k represents element i of k (e.g., nm

represents the name of method m ∈M)

ure 5. Analysis rule ⟨R RTE⟩ defines the runtime environment (e.g., .NET or
Java) of the framework.Instead, code rules define what should be found inside
the application to apply a specification, in particular identifying some specific
types (either as supertype - ⟨R SUPER⟩, or as type in a member signature -
⟨R TYPE⟩), or annotations from the library (⟨R ANN⟩).
Example The first two lines of the specification of WindowsForms in Figure 3
define the ⟨RULES⟩. In particular, this specifies to apply the framework to ap-
plications whose (i) runtime environment is set to .net (line 1), and (ii) at least
one class inherits from (or implements) Form class (line 2).
Implications ⟨IMPL⟩ specifies that a given annotation ⟨ANN⟩ implies a set
of other annotations. Then, if a program member is annotated with the first
annotation, it is automatically annotated with all the other annotations (defini-
tions of impl and ann in Figure 5). This can be useful in situations where the
developers have used annotations from the libraries to get some functionalities
in their code, and these annotations semantically imply some other annotations
supported by the analyzer, or when a framework searches a program member

11

through reflection by searching all annotated members. For example, if a Java
method is annotated with JAX-RS’s javax.ws.rs.GET annotation, it will eventu-
ally be called from the external environment to handle an HTTP GET request.
Hence, such method has to be considered an entry point of the analysis. Thus,
relatively to Julia, an implication between @GET and @EntryPoint is needed.
Predicates ⟨PREDICATE⟩ lets one assign an arbitrary name ⟨ID⟩ to a con-
dition ⟨C CHAIN⟩ (later defined in this Section), in order to avoid rewriting it
multiple times. For example, one might define predicate isGetter whose condi-
tion identifies a getter method. Once such predicate is defined, its name can be
used in any other condition instead of rewriting the actual condition.
Example For instance, line 5 of the WindowsForms specification in Figure 3
defines the isNestedComponent predicate. This holds if and only if the type of the
given field satisfies predicate isComponent (that is, it is a subtype of IComponent
as defined at line 3), and the class defining the field satisfies isComponent as well
(that is, it is a subtype of IComponent).
Specifications This is the core component of SARL. A specification lets one
specify a condition on a program member that, when satisfied, causes a set of
annotations to be generated on that program member. Thus, all such members
have to be iterated when evaluating a specification. This construct enables one to
identify members depending on their structure, as well as the one of their related
members. This goes beyond the simple reflective access (e.g., the one offered by
library specifications described below), allowing one to identify members in a
very precise manner. ⟨SPEC⟩ consists of the type ⟨T⟩ of program member we
want to annotate, one or more annotations ⟨ANN⟩, and a condition ⟨C CHAIN⟩
that states when these have to be applied (definition of spec in Figure 5, where
typeOf returns the type - class, field, method, or parameter - of a program
component). For example, when analyzing a Unity [24] application, each Start
method of classes that extends UnityEngine.MonoBehaviour should be consid-
ered as an entry point for the analysis, since such method will be called by the
Unity engine to perform the setup of the component. This can be achieved using
a specification that has mtd as target, contains @EntryPoint as annotation, and
as condition the and of the two aforementioned conditions (method’s name and
parent class).
Example For instance, line 9 of WindowsForms specification (Figure 3) specifies
to annotates all fields satisfying isNestedComponent field with @ExternallyRead
and @Injected.
Conditions ⟨C CHAIN⟩ may be (i) the application of a predicate (via its name),
(ii) a logical operator (and, or, not) applied to other conditions, (iii) a non-
terminal operator followed by a further condition, or (iv) a terminal operator
followed by a constant value where str and int represent strings and integers, re-
spectively. Conditions are grouped in chains, where operators are applied to nav-
igate among the properties of program members (e.g., starting from a class, one
could navigate to a parameter of one of its supertype’s methods). The ability to
navigate through program members enables the definition of syntactic conditions
that corresponds to how a framework might search for a program member to in-

12

1: function applySARL((a, l), ⟨SARL⟩)
2: rte ← ⟨RULES RTE⟩ ∈ ⟨RULES⟩ ∈ ⟨SARL⟩
3: code ← ⟨RULES CODE⟩ ∈ ⟨RULES⟩ ∈ ⟨SARL⟩
4: if hold((rte, code), a) then
5: for ⟨SPEC⟩ ∈ ⟨SARL⟩ do
6: a ← spec(⟨SPEC⟩, a)
7: for ⟨LIB⟩ ∈ ⟨SARL⟩ do
8: a ← lib(⟨LIB⟩, a)
9: l ← lib(⟨LIB⟩, l)

10: for ⟨IMPL⟩ ∈ ⟨SARL⟩ do
11: a ← impl(⟨IMPL⟩, a)
12: l ← impl(⟨IMPL⟩, l)
13: return (a, l)

Fig. 6. Application of a SARL specification to a program

teract, both by searching instances of particular types or by retrieving members
annotated with a given framework annotation. The formalization of the check
of these conditions is represented by function chain in Figure 5 and left implicit
for the sake of simplicity (mostly standard checks of standard OO properties).
Notice that, if one omits an operator, the default one will be applied, depending
on the program member that is currently under evaluation (recall Table 6 from
Appendix A).
Library specifications In object-oriented software, most of the code is con-
tained in libraries providing standard features to the application. However, li-
braries contain code which could need SARL generated annotations, since their
methods or fields could require additional knowledge. However, library code is
usually much bigger than the application code, and iterating over it would lead
to a huge overhead. In this context, SARL does not provide complex conditions,
but it simply allows one to check the signature of a program member and anno-
tate it. Therefore, ⟨LIB⟩ consists of the type ⟨T⟩ of program member we want
to annotate, one or more annotations ⟨ANN⟩, together with the signature ⟨SIG⟩
of the target program member. When applied, this leads to adding the given
annotations to all the program members whose signature fulfills the specified
signature (definition lib in Figure 5, where checkSignature checks if two signa-
tures represent the same element, and typeOf returns the type - class, field,
method, or parameter - of a program component). Notice that, even if this com-
ponent was specifically designed to operate on library code, it can be used also
to annotate application code, avoiding the iteration on all program members by
loading them through reflective calls.
Example Line 10 of WindowsForms specification (Figure 3) specifies to an-
notate with @ResourceThatDoesNotNeedToBeClosed all the getter methods of
class Brushes that return a Brush instance, since these are system-wide objects
handled by the runtime, and therefore should not be manually closed by the
program.
SARL Application Figure 6 reports the algorithm for applying a SARL specifi-
cation to a program. In particular, given a specification ⟨SARL⟩, and a program

13

Framework Application Version Stars Rank LOCs Time with Time without
WindowsForms Shadowsocks [4] 4.1.6 49768 1 12788 2’23” 2’14”
WindowsForms ShareX [5] 12.4.1 13045 11 99191 5’24” 5’24”
WindowsForms CefSharp [3] 73.1.130 7109 36 17863 2’01” 1’59”
ASP.NET SignalR [2] 2.4.1 8067 18 49182 4’24” 4’36”
ASP.NET AspnetBoilerplate [1] 4.5.0 8476 23 87288 6’15” 6’08”
ASP.NET Umbraco [6] 8.0.2 2995 139 130384 11’09” 11’03”

Table 1. Analyzed applications

composed of an application a and a library l (both represented as set of classes),
it applies the specification if and only if the rules set ⟨RULES⟩ is satisfied on
the application a (line 4). If this is the case, it then sequentially applies all the
specifications ⟨SPEC⟩ (lines 5-6), libraries ⟨LIB⟩ (lines 7-9), and implications
⟨IMPL⟩ (lines 10-12) contained in the SARL specification ⟨SARL⟩. Note that,
while specifications ⟨SPEC⟩ are applied only to the application, library specifi-
cations ⟨LIB⟩ and implications ⟨IMPL⟩ are applied to both the application and
the library part of the program. In this way, SARL allows adding information
about the libraries of the framework, and not only to model the effects of the
framework runtime model on the application.

5 Experimental Results

SARL has been interfaced with the Julia static analyzer, version 2.7.0.3, as spec-
ified in Figure 2. The SARL specification parser relies on JavaCC5, while the
semantics has been natively implemented in Java and passed to Julia through
external (i.e., specified in an XML file rather than the application code) anno-
tations.

In this Section, we analyze, for both WindowsForms and ASP.NET, the 3
most popular applications publicly available in GitHub that rely on these frame-
works. We adopt as a metric of the popularity of a repository its number of
stars. For each application we took the last stable release in the repository. All
the statistics refer to the status of GitHub on June 28th, 2020. Each application
has been analyzed with and without the framework specification. We report as
lines of code (LOC) the number of physical lines of code reported by Locmetrics
on the C# source files (with cs file extension) of the different applications in
GitHub. Therefore, we consider only the code of the application, and not the
libraries.

For each application, we compared the results of the analyses with and with-
out SARL, investigating the number of warnings added or removed by the latter
analysis. Each of such warnings has been manually investigated to ensure that
no true positives were lost with our approach, and that new warnings can be
accounted on the introduction of new entry points causing the analysis of pre-
viously unreachable code.

Table 1 reports the applications we selected, where column Framework re-
ports the framework it uses, Application the name of the analyzed application,
Version the analyzed version (taken from GitHub, thus directly associated with
5 https://javacc.org/

14

https://javacc.org/

Shadow. ShareX CefSharp
Warn. w/o spec. 730 5471 465
Common (%) 473 (64.8%) 1397 (25.5%) 241 (51.8%)
Added (%) 0 (0%) 6 (0.1%) 0 (0%)
Removed (%) 257 (35.2%) 4074 (74.5%) 224 (48.2%)

Table 2. Difference in warnings on WindowsForms analyses

Warning SS SX CS
A R A R A R

ResourceNotClosedAtEndOfMethod 0 8 0 98 0 32
CloseableNotStoredIntoLocal 0 202 0 2802 0 124
FieldShouldBeReplacedByLocals 0 32 0 958 0 50
FieldIsOnlyUsedInConstructors 0 0 0 1 0 0
UselessAssignmentToDefaultValue 0 7 0 83 0 6
TestIsPredetermined 0 4 0 66 0 6
UnreachableInstruction 0 4 0 66 0 6
SetStaticInNonStaticWarning 0 0 6 0 0 0

Table 3. Warnings removed on WindowsForms applications

a commit that can be used for reproducibility), Stars the number of stars of
the repository, Rank the rank of the repository among the C# ones, Time
with and Time without the analysis time with and without the application of
the framework specification (considering also the time needed for applying the
specification to the application), respectively. All the analyses were executed on
a r5.xlarge Amazon Web Service machine. These instances feature a Xeon Plat-
inum 8000 series (Skylake-SP) processor with a sustained all core Turbo CPU
clock speed of up to 3.1 GHz and 32 GB of RAM.

5.1 WindowsForms

Table 2 reports, for each application, the number of warnings with Basic checkers
without the SARL specification, and the number of common, added and removed
warnings when applying the specifications presented in Figure 3 of Section 4.
The result highlight that even small specifications can have a major impact on
the results of the analyses, removing a huge portion of false alarms issued due to
the lack of knowledge by the analyzer. We will focus on the removed warnings
only, since the 6 ones added in ShareX analysis are all real alarms which reside
in methods that were previously considered dead code (thus not analyzed).

Table 3 reports the warnings removed (columns R) and added (A) when
applying the WindowsForms specification to Shadowsocks (column SS), ShareX
(SX) and CefSharp (CS), grouped by warning type. The specification targeted
mostly disposable graphical objects stored into fields. The majority of the warn-
ings (4403 out of 4556, that is, 96%) refers to these components, and we focus the
following discussion on them. Appendix B.1 reports several examples of these
warnings.

15

SignalR ANB Umbraco
Warn. w/o spec. 681 552 1729
Common (%) 658 (96.6%) 544 (98.6%) 1658 (95.9%)
Added (%) 1 (0.1%) 0 (0%) 0 (0%)
Removed (%) 23 (3.4%) 8 (1.4%) 71 (4.1%)
Table 4. Difference in warnings on ASP.NET analyses

Warning SR AB UM
A R A R A R

FieldNeverUsed 0 6 0 0 0 1
FieldReadWritten 0 0 2 0 0 0
Uncalled 0 17 0 10 0 70
PossibleInsecureCookieCreation 1 0 0 0 0 0

Table 5. Warnings removed on ASP.NET applications

5.2 ASP.NET

Table 4 reports, for each analyzed application, the number of warnings with
a standard analysis (without the SARL specification) executing Basic checkers
all together, and the number of common, added and removed warnings when
performing the same analyses with the specifications presented in Figure 1 of
Section 1.1 (ANB is a shortcut for AspnetBoilerplate). It is noticeable that
the results on ASP.NET applications are less pervasive that the ones on desk-
top applications: this is due to the nature of those projects which are rather
libraries (SignalR and AspnetBoilerplate) or content providers (Umbraco), and
they contain very few Web pages based on ASP.NET.

Table 5 reports the warnings removed (R) and added (A) when applying the
ASP.NET specification to SignalR (SR), AspnetBoilerplate (AB) and Umbraco
(UM) grouped by warning type. As for WindowsForms results, we will not
discuss the added warnings since they are true alarms on methods that were
previously considered dead code. Appendix B.2 reports several examples of these
warnings.

6 Conclusion
In this paper, we introduced SARL, a domain specific language which allows one
to specify the execution model of a framework. Such information is used to
instruct a static analyzer about the model of execution of a framework. This
approach enables the support of new frameworks through a readable and doc-
umentable model without modifying the code of the analysis engine, since it
is applied to the analyzed application producing annotations that agnostically
instruct the analyzer about the runtime environment. Furthermore, we applied
this approach to six real-world applications dealing with two different frame-
works, studying how the number of false alarms was reduced thanks to their
respective specifications. Experimental result show that, even with extremely
concise SARL specifications, all false alarms previously issued due to the lack of
knowledge on these frameworks by the Julia static analyzer were successfully
removed. The percentage of false alarms removed by SARL specifications highly
varies depending on how much code relies on the frameworks (that is, from a
minimum of 1.6% on AspnetBoilerplate to a maximum of 74.5% of ShareX).

16

Currently, we are working on the application of SARL to other frameworks,
and in particular to Java Lombok [18], .NET Xamarin [26] and Unity [24].

References
1. Asp.net boilerplate, https://github.com/aspnetboilerplate/

aspnetboilerplate
2. Asp.net signalr, https://github.com/SignalR/SignalR
3. Cefsharp, https://github.com/cefsharp/CefSharp
4. Shadowsocks for windows, https://github.com/shadowsocks/

shadowsocks-windows
5. Sharex, https://github.com/ShareX/ShareX
6. Umbraco cms, https://github.com/umbraco/Umbraco-CMS
7. Ali, K., Lhoták, O.: Averroes: Whole-program analysis without the whole program.

In: Proceedings of ECOOP’13. Lecture Notes in Computer Science, Springer (2013)
8. Arzt, S., Bodden, E.: Stubdroid: automatic inference of precise data-flow sum-

maries for the android framework. In: Proceedings of ICSE ’16. IEEE (2016)
9. ASP.NET: (2018), https://www.asp.net/

10. Ball, T., Rajamani, S.: Slic: A specification language for interface checking (of c).
Tech. Rep. MSR-TR-2001-21 (January 2002)

11. Centonze, P., Naumovich, G., Fink, S.J., Pistoia, M.: Role-based access control
consistency validation. In: ISSTA (2006)

12. Ernst, M.D., Lovato, A., Macedonio, D., Spiridon, C., Spoto, F.: Boolean Formulas
for the Static Identification of Injection Attacks in Java. In: Proceedings of LPAR
’15. Lecture Notes in Computer Science, Springer (2015)

13. Ferrara, P., Cortesi, A., Spoto, F.: Cil to java-bytecode translation for static anal-
ysis leveraging. In: Proceedings of FormaliSE ’18. Springer (2018)

14. Forms, W.: (2018), https://docs.microsoft.com/it-it/dotnet/framework/
winforms/

15. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12) (2004)
16. J. Toman, D.G.: Concerto: a framework for combined concrete and abstract inter-

pretation. In: Proceedings of the ACM on Programming Languages. vol. 3 (2019)
17. Leavens, G.T., Baker, A.L., Ruby, C.: Jml: a java modeling language. In: In Formal

Underpinnings of Java Workshop ’98 (1998)
18. Lombok: (2018), https://projectlombok.org/
19. Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Inference. In: Proceedings

of OOPSLA ’91. ACM Press (1991)
20. Spoto, F.: Nullness Analysis in Boolean Form. In: Proceedings of SEFM ’08. IEEE

(2008)
21. Spoto, F., Mesnard, F., Payet, E.: A Termination Analyzer for Java Bytecode

Based on Path-Length. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 32(3), 1–70 (2010)

22. Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.: F4f: Taint
analysis of framework-based web applications. In: Proceedings of the 2011 ACM
International conference on Object-Oriented Programming, Systems, Languages,
Languages, and Applications. vol. 16, pp. 1053–1068 (2011)

23. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web application. In: PLDI. ACM (2009)

24. Unity: (2018), https://unity3d.com/
25. Wikipedia: Software framework, https://en.wikipedia.org/wiki/Software_

framework
26. Xamarin: (2018), https://visualstudio.microsoft.com/xamarin/

17

https://github.com/aspnetboilerplate/aspnetboilerplate
https://github.com/aspnetboilerplate/aspnetboilerplate
https://github.com/SignalR/SignalR
https://github.com/cefsharp/CefSharp
https://github.com/shadowsocks/shadowsocks-windows
https://github.com/shadowsocks/shadowsocks-windows
https://github.com/ShareX/ShareX
https://github.com/umbraco/Umbraco-CMS
https://www.asp.net/
https://docs.microsoft.com/it-it/dotnet/framework/winforms/
https://docs.microsoft.com/it-it/dotnet/framework/winforms/
https://projectlombok.org/
https://unity3d.com/
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_framework
https://visualstudio.microsoft.com/xamarin/

class MainForm : Form {
ToolStripMenuItem tsmiTrayRecentItems;

}
class RecentTaskManager {

void UpdateTrayMenu() {
ToolStripMenuItem tsmi = MainForm.tsmiTrayRecentItems;
ToolStripMenuItem tsmiLink = new ToolStripMenuItem();
if (...) tsmi.DropDownItems.Insert(2, tsmiLink);
else tsmi.DropDownItems.Add(tsmiLink);

}
}

Fig. 7. Disposable objects stored in fields of IComponent classes

A Additional Tables

Member Trg Operators

Class cls name, subtypeOf, containsMethod,
containsField, hasAnnotation

Field fld definingClass, name, type, basicType,
hasAnnotation, hasAccessor

Method mtd
definingClass, name, returnType,
basicReturnType, hasLocalVariable,
hasAnnotation, numberOfParameters,
hasAccessor, hasParameter

Method par definingMethod, name, index, type,
Parameter basicType, hasAnnotation
Local Variable var definingMethod, name, type, basicType
Annotation ann name, hasOptionValue

String str equals, contains, startsWith,
endsWith, matches

Integer int equals
Table 6. Targets for conditions, with their respective operators (default operators are
in bold)

B Examples from Experimental Results

B.1 WindowsForms

CloseableNotStoredIntoLocal and ResourceNotClosedAtEndOfMethod
Warnings about closable resources are issued each time an object that imple-
ments Closeable (in Java) or IDisposable (C#) might not get closed/disposed:
such an object should be stored in (i) a final/readonly field on which a call to
close()/Dispose() happens in reachable code, or (ii) a local variable on which a
call to close()/Dispose() happens before the end of the method.

Figure 7 shows a snippet of code from ShareX. In RecentTaskManager. Up-
dateTrayMenu() a new ToolStripMenuItem is created and then added to another
ToolStripMenuItem retrieved from a field of MainForm. Since (i) ToolStripMe-
nuItem implements IComponent, (ii) MainForm inherits from Form which im-
plements IComponent, and (iii) the newly created ToolStripMenuItem will be

18

Operator Trg What does it check
Non-terminal operators

definingMethod mtd current member’s containing
method

name str current member’s name
index int current parameter’s index
type cls type of the current member
basicType str type of the current member
hasAnnotation ann current member’s annotations
definingClass cls current member’s containing

class
returnType cls return type of the current

method
basicReturnType str return type of the current

method
hasVariable var current method’s local

variables
hasAccessor str current member’s accessors
numberOfParameters int current method’s number

of parameters
hasParameter par current method’s parameters
subtypeOf cls current class’ superclasses,

interfaces (recursively)
containsMethod mtd current class’ methods
containsField fld current class’ fields
hasOptionValue str current annotation’s specified

member’s value
Terminal operators

equals the current string/integer is
equal to the given value

startsWith the current string starts with
the given value

endsWith the current string ends with
the given value

contains the current string contains
the given value

matches the current string matches
the given regular expression

Table 7. Operators’ details

reachable from MainForm after the execution of the if-else block, such object
will be automatically disposed from the runtime environment when the instance
of MainForm will be disposed by the WindowsForms runtime. When analyz-
ing ShareX without the WindowsForms specification, Julia raises the following
warning:
RecentTaskManager.cs:156: [CloseResource] This instance of class ”ToolStripMenuItem”
does not seem to be always closed by the end of this method. It seems leaked at line 156

When we apply the WindowsForms specification in Figure 3 to this code, line
8 annotates field MainForm.tsmiTrayRecentItems as @AutoClosedResource, and
this informs Julia that every resource reachable from that field will be automat-
ically disposed. Hence, the above warning will not be issued anymore, since the
newly created ToolStripMenuItem tsmiLink will end up being reachable from
such field.
FieldShouldBeReplacedByLocals and FieldIsOnlyUsedInConstructors
These kinds of warnings are issued when a field could be replaced by a local
variable inside the only method (FieldShouldBeReplacedByLocals) or construc-
tor (FieldIsOnlyUsedInConstructors) that references them.

19

class StatisticsStrategyConfigurationForm : Form {
Button OKButton;
void InitializeComponent () {

OKButton = Button();
// init code
splitContainer1 .Panel2.Controls .Add(OKButton);

}
}

Fig. 8. UI fields generated by Visual Studio

class BrowserTabUserControl {
IContainer components = null;

override void Dispose(bool disposing) {
if (disposing) {

if (components != null) {
components.Dispose();
components = null;

}
}

base.Dispose(disposing);
}

}

Fig. 9. Dispose() pattern of Form classes

Figure 8 shows a simplification of code generated by the WindowsForms
framework to represent a UI component in Shadowsocks. The field OKButton
is initialized with a button instance, and added to a container inside Initialize-
Component(), but the field is never used later in the code. Such initialization
is located inside the Visual Studio designer-generated file, and the user has no
responsibility for this. Julia raises the following warning on this code:
StatisticsStrategyConfigurationForm.cs: [ImproperField] Field ”OKButton” should be re-
placed by local variables

When we apply the WindowsForms specification in Figure 3 to this snippet
of code, line 7 annotates field OKButton as ExternallyRead and Injected, and
Julia does not produce the warning above anymore.
TestIsPredetermined, UnreachableInstruction and UselessAssignment-
ToDefaultValue Julia’s analysis is able to detect when a test always evaluates
to true or false. In this situation, two warnings are issued: the first stating that
the test is useless since it always evaluates to the same Boolean value, and
the second one to explicitly mark the unreachable branch (if this contains some
code). In addition, when a field or a local variable gets initialized with its default
value Julia raises an UselessAssignmentToDefaultValue warning.

Figure 9 shows a pattern generated by Visual Studio for handling the disposal
of resources of Form classes in CefSharp. The components field is non-null only
if the form contains some resources that are not UI objects but needs to be
disposed (e.g., a Timer instance). However, the field is initialized and managed

20

abstract class AbpWebApplication : HttpApplication {
void Application Start (object sender , EventArgs evargs) {

// startup code
}

}
class MvcApplication : UmbracoApplicationBase { }

Fig. 10. Application Start method

by the framework runtime, and the code of the application never assigns it. The
code of the designer declares the field, initializes it to null, and then disposes it
if it is not null. On this piece of code, Julia raises the following three warnings:

BrowserTabUserControl.cs:8: [UselessAssigment] Useless assignment of field ”components”
to its default value
BrowserTabUserControl.cs:103: [UselessTest] The result of this test is fixed: you are com-
paring null against null
BrowserTabUserControl.cs:105: [Deadcode] This instruction seems unreachable

When we apply the WindowsForms specification in Figure 3 to this snippet
of code, line 9 annotates field components as externally injected (as it effectively
happens in the framework runtime), and therefore Julia analyses do not produce
anymore these warnings.

B.2 ASP.NET

Uncalled Julia issues a warning on each method that is not reachable from
the entry points of the application, and the code from these methods is never
analyzed.

Figure 10 shows an Application Start method in AspnetBoilerplate. While
this is never actually used within the application code, it is indeed invoked by
the framework runtime at the first startup of MvcApplication. Hence, even if its
access is restricted (i.e., it is not public), it must be considered as an entry point.

Besides, the compilation of the web views of the application results in an
assembly containing one class file per view (named ASP. Page <namespace>
<viewName>) with only a constructor, a getter for the current application in-
stance and an Execute method, and an object factory (named ASP.FastObject-
Factory <applicationName>) that is used by ASP.NET to instantiate the web
views. These methods are both (i) generated code, and (ii) invoked by the run-
time.

When analyzing Umbraco, Julia raises the below warnings:

UmbracoApplicationBase.cs:72: [Deadcode] Method ”Application Start” is unreachable
ASP.FastObjectFactory umbraco.cs: [Deadcode] Method

”Create ASP Page Umbraco Install Views Index cshtml” is unreachable
ASP. Page Umbraco Install Views Index cshtml.cs: [Deadcode] Method
”get ApplicationInstance” is unreachable

21

class Default : Page {
TextBox userName;
TextBox roles ;
Button login ;
void Login(object sender , EventArgs e) {

var identity = new GenericIdentity(userName.Text);
var principal = new GenericPrincipal(identity ,

SplitString (roles .Text));
}

}

Fig. 11. UI fields generated by Visual Studio

When we apply the ASP.NET specification in Figure 1 to this snippet of
code, line 8 annotate Application Start as an entry point, while lines 10 and 11
do the same for the latter methods, removing all three warnings from the results.
FieldNeverUsed This type of warning is issued whenever a field is never read
or written inside the whole reachable application code. Figure 11 shows a snippet
of ASP.NET code from application SignalR. Method Login is an event handler,
hence is never explicitly called in the reachable code. In addition, fields userName
and roles are never explicitly initialized: they represent an alias for the web view
component declared in the cshtml file, and their values will be injected from the
runtime environment. When analyzing SignalR without the SARL specification,
Julia raises the following warnings:

Default.cs: [FieldAccess] Field ”userName” is never used
Default.cs: [FieldAccess] Field ”roles” is never used
Default.cs: [FieldAccess] Field ”login” is never used
Default.cs: [Deadcode] Method ”Login” is unreachable

When we apply the ASP.NET specification in Figure 1 to this code, line 8
annotates method Login as an entry point, while line 9 annotates fields user-
Name, roles, and login as externally read and injected, thus removing the four
warning reported above.

22

	SARL: OO Framework Specification for Static Analysis

