An Overview of Termination
in the Ethereum Blockchain

Tuca Olivieril [0000—0001—8074—8980]
Luca Negrinil [0000—0001—9930—8854]

2[0000—0003—1036—1718]

, Luca Pasetto ,
1[0000—0002—4678—933X]

, and Pietro Ferrara

! Ca’ Foscari University of Venice, Italy
{name.surname}Qunive.it
2 University of Luxembourg, Luxembourg
luca.pasetto@uni.lu

Abstract. The emergence of the Ethereum blockchain and the rise of
Turing-complete smart contracts have led to the creation of new solu-
tions for ensuring different kinds of termination. Indeed, non-termination
of a smart-contract execution within the blockchain network may have
critical consequences, ranging from slow performance to a complete de-
nial of service in the worst scenarios. Furthermore, smart contracts lack
a global access-control mechanism and may be executed indefinitely over
time, even after they have exhausted their purposes. Therefore, this re-
quires, in some cases, developing solutions implementing “soft” and “hard”
terminations—such as pausable, interruptions, and kill-switch mecha-
nisms—as well as providing safe termination guarantees. In addition,
termination is even more crucial when we consider legal aspects of smart
contracts, including compliance with laws and regulations, such as the
smart contract requirements proposed by the European Union Data Act.
In this paper, we explore several mechanisms to ensure various kinds
of termination in Ethereum, the most widely used blockchain. Moreover,
we investigate similar mechanisms for traditional programming languages
that can be applied to smart contracts in the blockchain context. The
primary purpose of this study is to fill the gap caused by the lack of
standards for these mechanisms and the emerging solutions typically
proposed by practitioners.

Keywords: Smart contract, blockchain, distributed ledger technology,
termination, kill switch, interruption, alt, pause, stop, revert, upgradable,
undo, rollback, restore, design pattern, legal contracts, EU Data Act

1 Introduction

The blockchain is a distributed ledger that is shared among a decentralized peer-
to-peer network, where decisions are made through a consensus mechanism and
transactions containing data are recorded and grouped into immutable blocks
within the ledger. In 2008, Bitcoin [5,46] introduced the first killer application
implementing a protocol based on the blockchain to exchange economic assets
without third-party intermediaries and in a pseudo-anonymous way. Later, in

2 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

2014, the Ethereum [6,65] platform proposed a similar protocol but including
the deployment and execution of Turing-complete smart contracts within the
blockchain thanks to the Ethereum Virtual Machine (EVM), a decentralized
computing virtualized environment for code execution. In particular, Ethereum
smart contracts are stateful computer programs written in a Turing-complete
low-level language called EVM bytecode. Compilers from high-level languages
such as Solidity generate it. Then, bytecode instructions (aka EVM opcodes)
are deployed through a transaction into the blockchain, where they are im-
mutably stored. The code execution of smart contracts within the blockchain
occurs through transactions that contain execution proposals and are subse-
quently carried out by the EVM. This new type of blockchain has contributed
to the wide diffusion of decentralized applications (DApps), i.e., blockchain-
based applications implemented through smart contracts, and has attracted the
attention of enterprises, academia, and governments.

Termination of smart contracts is a complex and essential aspect of blockchain
systems, carrying different meanings and implications depending on the context,
whether technical or legal. From a computer-science perspective, termination
refers to the property of a program or code execution halting after a finite num-
ber of steps. Ensuring termination is vital to prevent infinite or unbounded
computations. On a blockchain, if a piece of code executed by a node fails to
terminate, it can cause resource exhaustion, degrade node performance, and in-
crease latency. When such behavior spreads across multiple nodes, it can lead
to a denial-of-service (DoS) scenario, potentially disrupting the blockchain’s op-
eration or interfering with consensus protocols, which often depend on majority
agreement among nodes. In addition, ensuring safe termination means that a
program not only terminates but does not cause unexpected, malicious, or ad-
verse behavior, such as leaving the system in an inconsistent, vulnerable, or
corrupted state.

In a broader legal or operational context, termination can also refer to the
intentional disabling or suspension of a smart contract’s ability to process its
functionalities, either temporarily or permanently. Since smart contracts on pub-
lic, permissionless blockchains like Ethereum are typically immutable and always
accessible, this form of termination plays a critical role in risk management. It
enables developers or stakeholders to halt contract execution in response to unau-
thorized activity, fraudulent use, or the discovery of critical vulnerabilities. Such
mechanisms are essential for protecting users, preserving trust, and preventing
the continued exploitation of faulty or maliciously crafted contracts. Recently,
these aspects have also been accentuated by the final text approval of the Eu-
ropean Union Data Act [30] regulation, which mandates essential requirements
for data-sharing agreements based on smart contracts, including a “kill switch”
clause for safe termination and interruption:

to ensure that a mechanism exists to terminate the continued execution
of transactions and that the smart contract includes internal functions
which can reset or instruct the contract to stop or interrupt the operation,

An Overview of Termination in the Ethereum Blockchain 3

in particular, to avoid future accidental executions (art. 36, par. 1, EU
Data Act [30])

According to EU Crypto Initiative [38], these behaviors can be classified into
two different types of termination: soft termination and hard termination. Soft
termination occurs when a program is temporarily paused/interrupted, i.e., an
access-control mechanism remains active, and it may be triggered in order to
restart the core program operations. Instead, hard termination occurs when the
pausing becomes irreversible, and this de facto “terminates” the program be-
cause core operations can no longer be performed. Despite the several critical
implications of termination, there is currently a lack of comprehensive informa-
tion on the topic and how to effectively implement termination in blockchain
systems. Specifically, there are no established standards to guide best practices,
scientific literature on the topic is limited, and most solutions are provided by
practitioners who tailor them to specific use cases without verification or broad
applicability.

The goal of this paper is to offer a comprehensive understanding of termi-
nation mechanisms within the Ethereum ecosystem. In this regard, the paper
clarifies the different types of termination, provides examples and code snippets
of the current state-of-the-art and state-of-practice, and discusses verification
solutions to formally ensure termination occurs correctly.

The key contributions of this paper are the following:

— a comprehensive summary of the different kinds of termination in Ethereum;

— an investigation of the possible solutions to ensure termination and inter-
ruptions of code executions;

— an investigation of rollback techniques to restore previous smart-contract
states;

— an investigation of techniques to mitigate the consumption of gas and funds
incurred for termination due to failures, errors, or unsafe states; and

— an investigation of verification techniques to formally guarantee the termi-
nation of smart-contract executions.

Paper structure Section 2 examines the mechanisms adopted by the blockchain
to force program termination through the gas mechanism. Section 3 discusses
soft and hard terminations, proposing solutions to achieve them at the smart-
contract level, along with related pitfalls. Section 4 investigates safe-termination
mechanisms. Section 5 discusses related work, and Section 6 concludes the paper.

2 Mechanisms for Program Termination

In the blockchain context, ensuring program termination of smart contracts is
crucial to prevent issues like infinite code execution that could lead to resource
exhaustion and denial of service. However, determining whether a non-trivial
program can terminate for each input is undecidable (the well-known halting
problem [60]).

4 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

The solutions to enforce program termination vary, ranging from time to
instruction-count limits. However, among them, the most famous is the gas mech-
anism proposed by Ethereum [6,65]. When a smart contract is executed, it also
sets an amount of gas that it “burns” during its execution. If the gas is depleted
before the execution is completed, then the contract execution is halted, lead-
ing to a transaction failure, and any changes made during the execution are
rolled back. Gas units are purchased with cryptocurrency to avoid the abuse
of the network. In addition, a maximum limit for consumable gas is set by the
Ethereum protocol to avoid large executions by wealthy users that could congest
the network. Therefore, the gas system ensures that a program’s execution ends
regardless of the input. Furthermore, thanks to the rollback in case of failed
transactions due to running out of gas, this termination can also be considered
safe because it restores a previous state without corrupting or modifying the
smart-contract state.

2.1 Pitfalls and Security Implications of Gas Mechanism

Although the gas mechanism is a powerful solution, it also introduces potential
security risks, known as out-of-gas vulnerabilities [4,35], which in 2018 affected
Ethereum contracts with a combined value of over $2.8 billion [35]. In these
cases, the attack surface includes the maximum gas limit per transaction and
components that can be dynamically increased over time, such as collections
and arrays. For instance, if a large number of elements are generated, an array
might become so long that its manipulation exceeds the maximum gas (metering
of code execution) allowed for Ethereum transactions, potentially leading to a
denial-of-service of functionalities involving that data structure [25,26].

3 Mechanisms for Soft and Hard Termination

As reported in Section 1, the concepts of soft and hard terminations for smart
contracts originate mainly from domains outside traditional computer science.
Furthermore, Ethereum’s gas mechanism is designed to enforce economic bounds
and ensure program termination, and for this reason is not suitable for these
purposes.

Soft termination may evoke the notion of a “pause”in traditional software sys-
tems, i.e., the act of suspending the rescheduling of a process or task and putting
it into an idle state, eventually resuming it once an explicit or implicit event
is triggered. However, this analogy cannot fully fit the behaviors of Ethereum
smart contracts, because there is no way to truly pause a contract. The code
of a smart contract becomes immutable (that is, it cannot be later modified)
and it is publicly accessible and available after its deployment in the Ethereum
blockchain. This means any Ethereum user can send a transaction request for
the smart contract to execute, because there is no global block on contract ac-
cess. Hence, in this specific context, we can define the notion of “pause” as a
way implemented in the internal logic of the contract, preferably governed by

An Overview of Termination in the Ethereum Blockchain 5

some form of access control, for making the program exit (i.e., some code not
being executed) under certain circumstances. In other words, this form of pause
allows the contract to bypass or disable certain execution paths, thanks to the
mutability of the contract’s state, which can be used to control execution flow.
Similarly, hard termination can be achieved by permanently setting the state to
disable any contract’s functionality. Additionally, hard termination can also be
achieved by a specific native Ethereum instruction to delete contracts.

Below, we discuss the different ways to implement and achieve soft and hard
terminations in Ethereum smart contracts. Additionally, we also focus on the
security implications and concerns of different approaches.

3.1 Termination through conditional statements

contract Pausable {
address public adminAddress;
constructor () {
// store the address of the contract deployer

adminAddress = msg.sender;

}

bool public pause;

function transfer (address receiver, uint256 amount) external {

// pause check
require (pause == false, "The transfer is paused");

// logic for the token transfer

require (balances [msg.sender] >= amount, "Not enough tokens");
balances [msg.sender] -= amount;

balances [receiver] += amount;

}
function setPause(bool _pause) public {

require (msg.sender == adminAddress, "Invalid sender");
pause = _pause;

Fig. 1: Pausable implementation based on a boolean flag, which temporarily in-
hibits the execution of the core token transfer instructions.

As suggested by Wohrer et al. [64], a simple way to implement soft termi-
nation into an Ethereum smart contract is by using conditional statements and
Boolean guards acting like a switch button to inhibit parts of the code, effec-
tively pausing it. Figure 1 shows a code snippet written in Solidity implement-
ing a simple pausable mechanism. The global variable pause declared at line 10
manages the pause capabilities. It can be set by the setPause method, and it is
exploited within the transfer method to drop the code execution, thus inhibit-
ing the transfer of tokens. Specifically, if pause is false, the require statement

6 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

1 function terminate() public {
2

3 require (msg.sender == adminAddress, "Invalid sender");
4

require (pause == false, "Value has already been set");
6 pause = true;

Fig.2: Write-once mechanism which forces the contract to be permanently
paused.

at line 16 does not have any effect on the execution flow. Otherwise, if pause is
true, the require statement at line 16 halts the execution returning the message
"The transfer function is paused" in the transaction response. Note that the
require statement at line 25 ensures that only the admin user can activate the
pause.

Similarly, it is also possible to implement hard termination of the transfer
functionality simply by implementing pause as a write-once variable. To do this,
we simply need to implement the same contract in Figure 1 by replacing the
setPause method with the terminate method proposed in Figure 2. In particular,
in this way, it is no longer possible to change the value of pause arbitrarily since
the setPause method is missing. When the contract is deployed for the first time,
the value of pause will be the default one, i.e., false. The only way to change
it is through terminate, which, after the first execution, leads to an irreversible
contract state because it sets pause to true, and the value of pause cannot be
changed anymore.

For the sake of simplicity, Figures 1 and 2 assume that the user who deploys
the contract is the admin user. The assignment is implemented in the constructor
at line 7, and the value of admin’s address is stored in field adminAddress at line
3. Note that the visibility of adminAddress is public, meaning it can be read
externally outside the contract (e.g., through web APIs such as web3.js or by
other contracts), but can only be modified from inside the contract unless there
is an explicit setter function provided. Then, in the case of Figure 1, it can be set
only by invoking the constructor. In state-of-the-art implementations, the most
popular pausable contracts, such as those proposed by OpenZeppelin [53, 55],
implement more sophisticated access control layers to handle who and how a
user or the contract can pause operations. Instead, our contract focuses on the
termination problem, and more sophisticated access control mechanisms can be
added without modifying the termination functionalities.

3.2 Termination through cross-contract invocations

In Ethereum, it is possible to execute cross-contract invocations between smart
contracts already deployed in the blockchain. This means that a smart con-
tract can invoke a function in another deployed smart contract through the
CALL, STATICCALL, and DELEGATECALL opcodes. Cross-contract invocations can be

An Overview of Termination in the Ethereum Blockchain 7

exploited to communicate with other contracts for data exchange (e.g. values,
assets, and cryptocurrencies), to build libraries of shared code that multiple con-
tracts can access, to overcome limitations related to contract size [17], and to
circumvent code immutability through proxy upgrade patterns [45] to include
new features and patches in DApps. They can also implement soft and hard
termination mechanisms. For instance, the proxy upgrade pattern [45] allows
the building of a DApp based on multiple smart contracts where it is possible
to upgrade the application logic while maintaining the same contract address.
Then, in the settings of soft and hard terminations, it is possible to implement
a “switch” to inhibit parts of code by changing the target of cross-contract invo-
cations.

Considering the simplified version of a proxy upgrade pattern scenario in
Figure 3, where the code proxy contract with address Oxa. .. is reported in Fig-
ure 4 and the logic contracts with addresses Oxb... and Oxc. .. are reported in
Figure 5a and Figure 5b, respectively. The proxy upgrade pattern can be viewed
as a template [32] design pattern where a proxzy contract acts as a template pro-
viding hook functions that perform cross-contract invocations to other deployed
contracts containing the application logic. In Figure 4, the hook function is foo
at line 20, while the concrete functions that implement the application logic are
the foo functions at lines 10 and 4 in Figure 5a and Figure 5b, respectively. In
these cases, the cross-contract invocations are parametric. The parameter values
are stored in the contract state, and they can typically be modified by user input.
This proxy maintains the contract state, and it can be updated to point to a new
implementation, allowing the underlying application logic to be upgraded with-
out changing the proxy contract’s address. In this way, it is possible to inhibit
functionalities by redirecting cross-contract invocation to a no-op function of the
same or another logic contract. In Figure 4, the cross-contract invocations are
executed by the delegatecall at line 25 which calls a hardcoded function defined
as "foo(uint256)" from a contract that is specified by the address coming from
in the global variable logicContract, which can be changed over the time by
the admin user using the method upgrade at line 13. Note that, it is a delegate
call because it allows the proxy to execute the logic contract’s code in its own
context. In the settings of Figure 3, we have the concrete application logic at
the address 0xb..., i.e. the foo method of Figure 5a that increase a counter,
while the foo method of Figure 5b at the address 0Oxc... correspond to the no-
op. Then, it is possible to turn on and off the application logic, switching the
addresses 0xb. .. and Oxc. .. respectively by playing with the upgrade method of
Figure 4.

Compared with the termination through conditional statements only, the
solution with cross-contract invocations is generally economically more expensive
because it requires one to consume a greater amount of gas to deploy multiple
smart contracts. Indeed, as currently reported by the fee schedule in the Yellow
Paper of Ethereum [65, Appendix GJ, the cost paid for each contract-creating
transaction is at least 32000 units of gas against the few dozen units consumed by
each basic EVM opcode that makes up the conditional statements. Moreover, the

8 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

Blockchain

address: Oxa...
function: foo

£00 (uint256) {
do something

value: 10 address: 0xb...

address: 0xa... T T 7
7 o\ Logic contract
with the functionality

foo (uint256)

foo(uint2se) (| address: Oxc...
no-op

L7

Logic Contract
with no-op function

Smart Contract

address: Oxa...

Admin function: upgrade

User
value: Oxc...

Fig. 3: Termination scenario with upgrade pattern

implementation of upgradable contracts is error-prone due to non-trivial security
implications such as correct management checks, restrictions, or versioning [42].
According to Huang et al. [37], it is also necessary to consider transparency
mechanisms because a contract may be quietly upgraded, when the functionality
of the contract has changed, without the user being aware that the contract has
been upgraded, which may lead to financial losses for the users. Furthermore,
in the worst-case scenario, if the contract runs a malicious update, there are
greater risks of a user becoming a victim. However, termination through cross-
contractual invocations allows the evolution of the DApp, with the possibility of
implementing new switches over time, allowing for greater possibility of future
extensions.

3.3 An instruction for the Self-destruction

As mentioned previously, the code of smart contracts is immutable and cannot
be changed. However, the EVM opcode SELFDESTRUCT (previously called SUICIDE

[7]) with its execution allows one to “delete” a contract and send any contract
funds to a specified address [6], ensuring hard termination.

In practice, during a smart contract deployment in Ethereum, the code is
uniquely associated to a special type of account called smart contract account,
which will be controlled by the code rather than private keys as it happens in-
stead for user accounts. In this way, the code can be identified in the network
thanks to the account address. The semantics of SELFDESTRUCT removes the code
and its internal state (storage) from the contract address, leaving a blank ac-
count. Furthermore, if a transaction with an execution proposal is sent to an
empty account, no code execution results, since there is no longer any code to

1
2

An Overview of Termination in the Ethereum Blockchain 9

contract Proxy {
address public adminAddress;

constructor () {
// store the address of the contract deployer
adminAddress = msg.sender;

}

address public logic contract;

// set of the logic contract after deployment

function upgrade (address _newlogicContract) public {
require (msg.sender == adminAddress, "Invalid sender");
logicContract = _newlogicContract;

// hook function

foo(uint256 _value) external payable {
address logic = logicContract;

require(logic != address(0), "Logic contract not set");

// cross-contract invocation

(bool success, bytes memory data) = logic.delegatecall (abi.encodeWithSignature ("foo(
uint256)", _value));
require (success, "Delegatecall failed");

Fig. 4: Proxy contract based on external calls that allows the admin to change
the target contract containing the application logic.

execute there. However, note that the SELFDESTRUCT only affects the state of the
account. Therefore, it does not remove the transactions’ history of the contract
prior to the SELFDESTRUCT execution since the blockchain itself is immutable. Fur-
thermore, it is also important to note that SELFDESTRUCT must be present in the
contract code and be executed to have its effect. Indeed, if the contract code
does not have a SELFDESTRUCT opcode (not included by default) or this is not
reachable during the execution, the smart contract cannot be deleted.

The SELFDESTRUCT instruction has always been highly debated in the Ethereum
community due to security and trust concerns. According to Chen et al. [20],
SELFDESTRUCT, this is a double-edged sword for developers. On the one hand, it
enables contract owners to have the ability to reduce financial loss when emer-
gency situations happen or when the code has ceased to serve its purposes. On
the other hand, this function is also harmful because it opens attack vectors
for malicious users. Moreover, according to Buterin [18], SELFDESTRUCT is the
only EVM opcode that breaks important invariants: (i) it causes an unbounded
number of state objects to be altered in a single block, (ii) it cause the code of
a contract to change, and (iii) it can change other accounts’ balances without
their consent. For these reasons, in 2022, the EVM opcode SELFDESTRUCT has
been proposed for the deprecation [29], and over time, several alternatives have
been proposed for its replacement or to change its semantics (e.g., [8,9,12]).

1
2

3
4

5
6

8

16

10 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

contract Logicl {

address constant public proxyAddress = 0
Xa...;
uint256 public counter; 1 contract Logic2 {
2 address constant public proxyAddress = 0
constructor () { Xa...;
counter = 0; 3
4 function foo(uint256 _value) public {
5 // drop execution if the sender is not
function foo(uint256 _value) public { the proxy
// drop execution if the sender is not 6 require (msg.sender == proxyAddress, "
the proxy Invalid sender");
require (msg.sender == proxyAddress, " 7
Invalid sender"); 8 // mno-op
// application logic 9 require (false, "This function is
counter = counter + _value; disabled")
10 ¥
¥ 11 }
(a) Enabled function (b) Disabled function

Fig.5: Target contracts which enable and disable the application logic of proxy
contract.

3.4 Pitfalls and Security Implications of Hard Termination

According to Ezeozue [39], changes and actions to SELFDESTRUCT may reduces
certain attack vectors, but significant risks persist. For instance, EIP-6780 [9] in
2023 modified SELFDESTRUCT semantics to only clear contract code and storage
if executed in the same transaction as contract creation. However, this creates
compatibility issues in terms of blockchain interoperability. Indeed, some ma-
jor EVM-compatible blockchains (e.g. Binance Smart Chain (BSC) and certain
Polygon chains) have not yet enforced EIP-6780 restrictions, leaving SELFDESTRUCT
fully functional. Furthermore, this still leaves unresolved issues related to proxy,
implementations [27,39], such as front-run initialization transactions to execute
SELFDESTRUCT before proper setup is completed.

Regarding hard termination vulnerabilities, they are mainly caused by insuffi-
cient and/or improperly implemented access control, which can unexpectedly al-
low users to access hard termination functions [59]. According to Ressi et al. [59],
those related to SELFDESTRUCT can be referred in different ways in literature. The
terms Guard Suicide [19], Unprotected Suicide [36,44], Suicidal Contract [47],
Destroyable contracts [15] or simply Suicide [31] identify cases where an attacker
deliberately destroys smart contracts, and eventually performing an token trans-
fers to specific smart contracts that were not supposed to receive them, i.e. those
containing a SELFDESTRUCT. Specifically, according to Brent et al. [14], they can
be classified in two different types: (i) accessible self-destructs that can allow any
user to trigger the contract destruction and (ii) tainted self-destructs where an
attacker can also control/become the receiver address of the funds returned by
the contract destruction. Furthermore, the notion of accessible self-destruct can
be also generalized in accessible hard termination including also all operations,

An Overview of Termination in the Ethereum Blockchain 11

not only SELFDESTRUCT operations, that leads to a permanent and irreverable
paused state.

4 Safe Termination

The term safe termination can have different meanings depending on the context
in which it is used, and can be understood both in terms of preventing errors or
failures and as protection against malicious actors.

In the blockchain context, a contract can be terminated due to an unexpected
error, data corruption, or malicious activity by an administrator. In these cases,
termination should guarantee that the contract remains in a safe state where
no data is corrupted and malicious activities are prevented. For example, this
could involve denying transactions that could lead to an insecure termination,
restoring a previously safe state, and, if possible, returning any spent funds or
gas.

In general, this is often unfeasible because it would require rolling back trans-
actions already stored immutably on the blockchain. In fact, data changes at the
blockchain level are extremely rare events in permissionless blockchains, since the
absence of a central entity requires that the majority of the blockchain network,
often made up of several thousand peers, must agree. Furthermore, this could
lead to a hard fork in which the blockchain is split in two, and some nodes choose
the restored version while others keep the original one without rollback. For in-
stance, a hard fork due to a transaction rollback in the Ethereum blockchain
occurred because of the DAO attack, which affected the majority of peers and
users, causing economic damage exceeding $50 million [57].

Although transactions are immutable within the blockchain and cannot be
modified, it is still possible to modify the state of smart contracts and mitigate
gas consumption in the event of errors or failures. In the rest of this section,
we discuss revert and undo mechanisms that can partially address state-restore
issues, as well as methods to mitigate gas consumption using specific Ethereum
instructions at the smart-contract level.

4.1 Restore through Snapshots

Although rolling back transactions already stored in the blockchain is almost im-
practicable, this does not exclude the possibility of acting on the smart contract
state to totally or partially restore a previously safe state.

In current practice, some Ethereum smart contracts for tokens implement
mechanisms to collect snapshots of their states over time [54]. According to
Crosara et al. [25,26], the main purpose of snapshots is to provide an immutable
view of the ledger that a client can query without the risk that it changes during
the query, which would result in a race condition. Furthermore, they are useful
for investigating the consequences of an attack, for creating forks of the token
and for implementing mechanisms based on token balances such as weighted

12 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

voting. In practice, these contracts implement a mapping between addresses and
snapshot structures containing the values to be remembered.

Similarly, it is possible to design a solution that exploits a snapshot-like
structure to collect a smart contract state and then restore its information over
time. In traditional software programming, the memento [32,58] design pattern is
particularly involved in scenarios where one needs to implement undo or rollback
functionalities. It can be used to capture and store the current state of an object
so that it can be restored later without breaking the encapsulation.

Considering the rollback scenario based on the memento pattern proposed in
Figure 6, the code of the originator contract is reported in Figure 7, the code of
the caretaker in Figure 8, and the code of memento instances in Figure 9.

Blockchain

Memento
Contracts

Originator

address: 0x1... Contract

function: inc

Create

Caretaker
Contract

List of pointer
to the snapshots

address: 0x2...

Admin function: restore
User

address: 0x2...
\

value: 1

Fig. 6: Rollback scenario with memento pattern

The purpose of the originator contract is to handle application logic of the
state that one wants to save and restore. For simplicity, in Figure 7, the state is
just an integer value collected in the variable state at line 7, and the application
logic is the increment function inc at lines 14-16 that can be called by to change
the variable state. The operations of save and restore are instead delegated to
the caretaker.

As reported in Figure 8 at lines 11-14, an originator contract is created, and
an admin is set when a caretaker contract is deployed. In this way, an admin
can save the states of originator by calling the function saveState. This function
at line 18 asks the originator to create a snapshot of its state (Figure 7 at lines
18-21), i.e., a memento contract. It then collects the snapshot in an array at
line 19. These collected states can be restored by the admin calling the function

An Overview of Termination in the Ethereum Blockchain 13

import "./Memento.sol"
contract Originator {
address public caretakerAddress;
uint256 public state;
constructor (address _caretakerAddress) {

caretakerAddress = _caretakerAddress;
state = 0;

function inc() public {
state = state + 1;

function createMemento () public view returns (Memento) {
require (msg.sender == caretakerAddress, "Invalid caretaker address");
return Memento (state) ;

}
function restoreMemento(Memento memento) public {

require(msg.sender == caretakerAddress, "Invalid caretaker address");
state = memento.getState();

Fig. 7: Originator contract which contains the application state and allows the
caretaker to save it or restore a previous one.

restoreState that at line 25 asks the originator to replace the current state value
with that of the selected snapshot (Figure 7 at lines 23-26).

As shown in Figure 9, the memento contract collects just the values of the
originator contract at lines 4-6 in variable state, and it provides the function
getState at lines 8-10 to return to the saved state.

Alternatively, it is possible to manage snapshots not as contracts but as struc-
tures within the Caretaker contract using the struct data type and declaring
custom fields. However, the advantage of contracts is that they can also embed
code and utility functions.

The main limitation of this approach is that it is not possible to fully restore
all the values of a contract state from a previous snapshot. When a transfer
token or funds are involved, the moved tokens and funds cannot be forced back
to their owners because transfers are irreversible actions without a fork.

4.2 Lock of resources

While it is not possible to roll back a token transfer without performing a fork,
techniques to mitigate such behavior can still be applied. Lockup mechanisms
in smart contracts refer to features that restrict the movement or transfer of re-
sources, assets, or tokens for a specified period. These mechanisms are commonly
used in decentralized finance (DeFi) protocols and cross-chain token transfer pro-
tocols to enhance security, prevent premature selling, and align incentives among
participants.

14 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

import "./Originator.sol";
import "./Memento.sol";

contract Caretaker {
address public adminAddress;

Originator private originator;
Memento [] private mementos;

constructor () {

adminAddress = msg.sender;
originator = Originator (address(DK

function saveState() public {
require (msg.sender == adminAddress, "Invalid admin address");
Memento memento = originator.createMemento();
mementos.push(memento);

function restoreState(uint256 index) public {
require (msg.sender == adminAddress, "Invalid admin address");
require (index < mementos.length, "Invalid index");
originator.restoreMemento (mementos [index]);

Fig. 8: Caretaker contract that orchestrates the originator contract and all its
snapshots stored as memento contracts.

In the context of safe termination, a lockup mechanism can allow a fund
transfer to be postponed and kept pending for a specified period. This provides
an opportunity for an admin user to intervene in case of anomalies and return
the resources to the original owner before contract termination.

Figure 10 implements a smart contract with temporized lockup logic to han-
dle fund transfers in Solidity. The idea is that a sender user can submit transfer
proposals to the contract calling the function transferProposal at lines 19-35,
specifying the recipient and the duration of the time window in which the ad-
min can roll back the transaction. Then, the time window is computed at line
23, and transaction information, including the value to transfer, is collected and
locked in a map at lines 25-32. At this point, the recipient can claim the fund
transfer from the sender if the time window has expired by calling the function
claimTransfer at lines 37-47, which will retrieve the transfer information from
the map containing the transfer proposals and will perform the transfer if the
proposal has not been reversed previously during the time window.

The revert can be performed only by the admin user calling the function
revertTransfer at lines 49-62 that gets the transfer proposal and send back the
funds to the sender at line 61 if the time windows are still valid at line 58.

For simplicity, the code does not allow you to notify the administrator via
code. However, it can be implemented by enriching the program with events and
using the emit instruction to notify the admin client.

The main drawbacks of this solution are reduced decentralization, potential
for abuse, and increased operational complexity. Additionally, the transfer would

An Overview of Termination in the Ethereum Blockchain 15

1 contract Memento {
2 uint256 private state;

3
4 constructor (uint256 _state) {
5 state = _state;

6
8 function getState() public view returns (uint256) {
9 return state;

10 }
11}

Fig.9: Memento contract that captures a snapshot of the originator’s state at a
specific point in time.

still be carried out if the administrators were not notified in time during the time
window or were unable to carry out the operations.

4.3 Reverting Transactions and Fee Recovery

In Ethereum, transaction failures during smart-contract execution are mainly
due to running out of gas or executing an invalid instruction. In these cases,
a reversal of the operations occurs, and all the transaction gas is consumed.
Once this happens, the gas is deducted from the sender’s balance and is paid to
network peers involved in processing the transactions. Moreover, the revert of
EVM execution means that all changes, including log information, are lost and
there is no way to convey a reason for aborting an EVM execution.

To avoid this scenario, it is possible to add to a smart contract the REVERT

[13] opcode that provides a way to stop execution and revert state changes,
consuming only the gas used up to that point, preventing all the transaction gas
from being consumed. Additionally, the REVERT instruction also provides a pointer
to a memory section, which can be interpreted as an error code or message.

Note that transaction fees will still be burned, and no log information will
be saved if the contract code does not include a REVERT instruction (which is
not included by default), the instruction is unreachable during execution, or the
cases mentioned above occur before REVERT is executed.

The REVERT instruction is typically used for error handling, assertions, and
custom revert reasons based on the application logic.

Specifically, in Solidity, there are few high level instructions that include
REVERT for these purposes. For instance, require() validates conditions and re-
funds unused gas upon failure. While, revert () provides a flexible alternative to
require() encouraging the use of custom errors over string messages and improv-
ing gas efficiency and code clarity [63]. By contrast, assert() checks invariants
but does not refund unused gas, because its compilation omits REVERT. For this
reason, developers typically advise against overusing assert() to prevent exces-
sive gas usage.

16

L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

1 contract TemporizedFundTransfer {

address public adminAddress;

struct Transfer {
address sender;
uint256 amount;
bool claimed;

address recipient;
uint256 releaseTime;
bool reverted;

}

uint256 transferId;
mapping (uint256 => Transfer) public transfers;

constructor () {
adminAddress
transferId =

= msg.sender;
0;

function transferProposal (address recipient, uint256 duration)
require (msg.value > 0, "Must send some funds");
require(recipient address (0), "Invalid recipient");

uint256 releaseTime = block.timestamp + duration;

transfers[transferId] = Transfer ({
sender: msg.sender,
recipient: recipient,
amount: msg.value,
releaseTime: releaseTime,
claimed: false,
reverted: false
b
transferId = transferId + 1;

}

function claimTransfer (uint256 transferId) external {
Transfer storage transfer = transfers[transferId];

external payable {

require (msg.sender == transfer.recipient,

"Invalid recipient address");

require(block.timestamp >= transfer.releaseTime,

"Transfer is still locked");

require (!transfer.reverted,

require (!transfer.claimed,

"Transfer already reverted");

"Transfer already claimed");

transfer.claimed = true;
payable(transfer.recipient).transfer (transfer.amount);
}

function revertTransfer (uint256 transferId) external {

// drop execution if the sender is not the admin
require (msg.sender == adminAddress, "Invalid sender");

Transfer storage transfer = transfers[transferId];

require (!transfer.claimed,
require (!transfer.reverted,

"Transfer already claimed");
"Transfer already reverted");

require(block.timestamp < transfer.releaseTime,

"Lockup period has ended");

transfer.reverted = true;
payable (transfer.sender).transfer (transfer.amount);

Fig. 10: Temporized transfer lockup mechanism with a revert capability.

An Overview of Termination in the Ethereum Blockchain 17

5 Related Work

Despite the importance of topics related to termination, the current literature
in the blockchain context offers only limited results, with few studies providing
detailed examinations. Compared to this article, related work tends to focus nar-
rowly on specific aspects of termination, often presenting only partial overviews
and omitting implementation details, or failing to address the associated issues
and pitfalls comprehensively.

For the sake of readability, the literature can be divided into two strands: (i)
verification methods for proving and ensuring termination and (ii) the implica-
tions of termination in the legal sphere.

5.1 Literature about Termination Verification

Ensuring smart contract termination is necessary in several contexts. However,
the only way to prove that a program terminates is through formal methods.

In general, program termination analysis has benefited from many research
advances, and several tools have emerged over the years [16,22,28,34,40]. Ac-
cording to Courant and Urban [23], traditional methods for proving program
termination rely on the synthesis of a ranking function, a well-founded metric
that strictly decreases during program execution, which quantifies the remaining
distance to termination. Moreover, it is also possible to exploit abstract inter-
pretation [56] to approximate the most precise ranking function [23,24,62].

On the other hand, for the blockchain context, Le et al. [41] describe a pre-
liminary study for a static lazy approach to proving conditional termination and
non-termination of a smart contract by determining the input conditions under
which the contract terminates or not and whether the contract is qualified (i.e.,
eventually terminating) to run on the blockchain. In particular, they consider
non-termination due to infinite loops in smart contracts of blockchain without
a gas mechanism, such as Hyperledger Fabric. In contrast, they consider ter-
mination failure due to insufficient gas for blockchains with a gas mechanism,
such as Ethereum. In this approach, when a smart contract is submitted to the
blockchain, the system first automatically calculates logical formulas that deter-
mine the preconditions of the contract’s inputs and the chain states under which
its execution terminates or not. These formulas are verifiable and then recorded
into the blockchain as metadata of the contract. Later, when a transaction in-
vokes the contract, the system will check if the current blockchain state and the
contract’s input satisfy any recorded termination precondition. If this is the case,
then the contract is executed. Otherwise, the transaction is aborted. However,
according to Olivieri et al. [51,52], the assumption of applying the verification
directly on the blockchain may have non-trivial impacts on the system, such as
slowdowns or performance drops.

However, unlike traditional software, according to Genet et al. [33], reasoning
about the gas mechanism in blockchain software could make program termina-
tion of contracts easier to prove, i.e., proving that “it is impossible to construct
an infinite loop that does not consume any gas”. However, the official definition

18 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

of gas usage makes the proof of this property complex due to the decidedly
non-trivial semantics of contract calls and the fact that cash-in of call cost is
delayed until after the return in both regular and exceptional cases. Further-
more, it is also necessary that the gas model and the implementation are sound,
i.e., during the execution, the gas must be burned correctly to avoid a greater
waste of resources or, in the worst case, non-termination issues. More techni-
cally, Genet et al. [33] propose a formal and general proof of termination of
smart contracts based on a measure of EVM call stacks. They proved that no
program can execute indefinitely without consuming gas in the EVM execution
model by leveraging the Isabelle/HOL proof assistant to mechanize the proof.
The model is sound by leveraging safe over-approximates of the EVM semantics
with minimal assumptions on the concrete gas costs due to the fact that the
costs has already changed several times during the life of the EVM.

There are also studies to verify the detection of unexpected terminations
due to out-of-gas issues related to the gas limit caps in the smart contract ex-
ecution. Grech et al. [35] present a tool to detect gas-focused vulnerabilities in
Ethereum smart contracts automatically. It performs a static analysis that com-
bines abstract-interpretation-based low-level analysis for decompilation of EVM
bytecode, and declarative program analysis techniques for higher-level analysis.
The main limitation of the tool is that it provides a soundy implementation, i.e.,
it does not provide a guarantee of identifying all gas vulnerabilities, nor that the
reported vulnerability is a real bug. The reasons for this implementation choice
are due to the need to scale to a very large number of contracts. A sound gas
analyzer is instead proposed by Albert et al. [4]. It automatically infers upper
bounds on the gas consumption for each public function of Ethereum smart con-
tracts by relying on existing cost analysis techniques [2,3|. Then, the tool allows
one to identify functions with a constant memory gas consumption and functions
with a memory gas bound that is not constant, which could lead to out-of-gas
vulnerabilities.

Soft and hard termination, on the other hand, require verifying the code of
smart contracts. However, according to Olivieri et al. [51], this kind of verification
is challenging due to cross-component interactions of multiple contracts and the
need for formalization of the properties to be proven. Indeed, in DApps based on
multiple contracts, it may require that multiple parts of code are inhibited and
in specific orders to prevent the individual components from being used alone
and improperly. Furthermore, the verification becomes much more complex if
one also want to consider cross-chain and multi-chain scenarios [48].

Moreover, current smart contract verification tools are not primarily focused
on ensuring soft and hard termination. However, this challenge might be ad-
dressed similarly to how the liquidity property is verified [11]. According to
Bartoletti et al. [10], ensuring the liquidity property means that from “every
reachable state a user can execute a sequence of transactions to withdraw a given
amount of crypto-assets”, reducing the verification problem to symbolic model
checking.

An Overview of Termination in the Ethereum Blockchain 19

In a similar manner, soft and hard termination can be framed as ensuring
that, from every reachable state, an admin user can execute a sequence of trans-
actions to terminate the contract. This would reduce the verification problem to
model checking [21].

Regarding the detection of vulnerabilities related to hard termination, several
works [15,19, 31, 47| rely on static and dynamic symbolic execution techniques
to assess the feasibility of execution paths that include SELFDESTRUCT operations
without proper guarding conditions, commonly referred to as accessible self-
destruct [14]. However, these approaches do not analyze the target address of
the SELFDESTRUCT instruction, and thus cannot detect cases where the target
is tainted by user input, known as tainted self-destruct [14]. While, Brent et
al. [14] applies an information flow analysis tracking tainted data to detect both
these types of issues. Ressi et al. [59] investigate detection via machine learning
techniques, and Hu et al. [36] apply knowledge-graphs checks. Instead, Mavridou
et al. [44] propose a framework for the secure generation of smart contracts using
formal methods, ensuring that SELFDESTRUCT operations are properly guarded by
construction.

5.2 Literature about Termination in the Legal Sphere

Regarding the intersection of computer science and legal aspects, Marino et
al. [43] describe how to design alter and undo features based on legal definitions,
such as “Termination by Right”, “Rescission by Agreement”, and “Rescission by
Court”. They also develop prototypes of Ethereum smart contracts written in
Solidity that implement and align with these definitions. In these prototypes, the
termination mechanisms are implemented using conditional statements. Olivieri
et al. [49, 50| investigate the compliance of blockchain-based smart contracts
with the European Union Data Act. Among various compliance issues, they also
address termination problems, emphasizing a lack of standards beyond just the
“kill switch” clause. However, they do not propose any code implementations in
this context.

Instead, Seneviratne [61] provides a study fully focused on the “kill switch"
mechanism reported in the European Union Data Act. Compared to our work,
it does not go into deep details related to the Ethereum blockchain and does not
include technical code details about the smart contracts. However, it provides
a high-level overview regarding the mechanisms for smart contract termination
across several major blockchains and distributed ledgers (e.g., Ethereum, Car-
dano, Hyperledger Fabric, IOTA, ...). Abdrashitov et al. [1] discuss the nor-
mative regulation and practical aspects of smart contract termination in the in-
vestment context, specifically focusing on Russian legislation. They define smart
contract termination as the legal termination of an agreement and highlight the
inadequacy of Russian regulations, which currently makes it impossible to fully
apply the smart contracts to the traditional civil law rules.

20 L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara
6 Conclusion

In this paper, we investigated the termination of smart contract execution on the
Ethereum blockchain platform. In general, program termination is ensured by the
gas mechanism, which halts smart-contract execution when the gas associated
with a transaction runs out due to the execution of smart contract instructions.

Regarding soft and hard termination, solutions can be developed and imple-
mented in the code of smart contracts. These solutions can include kill switches
ranging from simple conditional statements to more complex designs inspired
by traditional design patterns. However, such solutions generally require access-
control policies to enable or disable the kill-switch functionality. This reliance on
admin users necessitates trusting a third party, which may not serve users’ inter-
ests or could arbitrarily block valid transfers. Moreover, this runs counter to the
“permissionless” principle, which aims to eliminate third-party intermediaries.
Additionally, verification techniques must be applied to ensure the correctness
of access-control implementations and the proper activation of soft and hard
termination mechanisms.

Finally, achieving safe termination in the blockchain context is challenging
because rolling back approved transactions typically requires proposing a fork
and securing the consensus of the majority of the blockchain network. However,
some program behaviors can be mitigated at the code level to reduce costs in
the event of failures, restore snapshots of specific smart-contract states, and add
timed lock-up mechanisms for fund transfers.

Acknowledgements

Work partially supported by SERICS (PE00000014 - CUP H73C2200089001),
iNEST (ECS00000043 — CUP H43C22000540006) projects funded by PNRR
NextGeneration EU, and by the Luxembourg National Research Fund (FNR)
(INTER/DFG/23/17415164/LODEX).

References

1. Abdrashitov, V.M., Davudov, D.A., Kolosov, N.F., Slezhenkov, V.V.: Risks of
Smart Contracts Termination in the Investment Sphere, pp. 291-298. Springer
Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-51536-1 27,
https://doi.org/10.1007/978-3-031-51536-1_27

2. Albert, E., Arenas, P., Correas, J., Genaim, S., Goémez-Zamalloa, M.,
Puebla, G., Romén-Diez, G.: Object-sensitive cost analysis for concurrent ob-
jects. Software Testing, Verification and Reliability 25(3), 218-271 (2015).
https://doi.org/10.1002/stvr.1569, https://doi.org/10.1002/stvr.1569

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoretical Computer Science 413(1), 142-159
(2012). https://doi.org/10.1016/j.tcs.2011.07.009, https://doi.org/10.1016/j.
tcs.2011.07.009, quantitative Aspects of Programming Languages (QAPL 2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

An Overview of Termination in the Ethereum Blockchain 21

Albert, E., Correas, J., Gordillo, P., Roméan-Diez, G., Rubio,
A.: Don’t run on fumes—parametric gas bounds for smart con-
tracts. Journal of Systems and Software 176, 110923 (2021).
https://doi.org/https://doi.org/10.1016/j.jss.2021.110923

Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly, Sebastopol, CA, USA, 2nd edn. (2017)

Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and Dapps. O'Reilly, Sebastopol, CA, USA (2018)

Ballet, G., Buterin, V., Feist, D.: EIP-6: Renaming SUICIDE opcode (2015),
ethereum Improvement Proposals, no. 6, November 2015. [Online serial]. Avail-
able: https://eips.ethereum.org/EIPS/eip-6 (Accessed 08/2024)

Ballet, G., Buterin, V., Feist, D.: EIP-4758: Deactivate SELFDESTRUCT
[DRAFT] (2022), ethereum Improvement Proposals, no. 4758, February 2022.
[Online serial]. Available: https://eips.ethereum.org/EIPS/eip-4758 (Accessed
08,/2024)

Ballet, G., Buterin, V., Feist, D.: EIP-6780: SELFDESTRUCT only in same trans-
action (2022), https://eips.ethereum.org/EIPS/eip-6780 (Accessed 08/2024)
Bartoletti, M., Ferrando, A., Lipparini, E., Malvone, V.: Solvent: liquidity verifi-
cation of smart contracts. arXiv preprint arXiv:2404.17864 (2024)

Bartoletti, M., Zunino, R.: Verifying liquidity of bitcoin contracts. In: Nielson, F.,
Sands, D. (eds.) Principles of Security and Trust. pp. 222-247. Springer Interna-
tional Publishing, Cham (2019)

Beregszaszi, A.: EIP-6046: Replace SELFDESTRUCT with DEACTIVATE
[DRAFT] (2022), ethereum Improvement Proposals, no. 6046, November 2022.
[Online serial]. Available: https://eips.ethereum.org/EIPS/eip-6046 (Accessed
08/2024)

Beregszaszi, A., Mushegian, N.: EIP-140: REVERT instruction (2017), ethereum
Improvement Proposals, no. 140, February 2017. [Online serial]. Available: https:
//eips.ethereum.org/EIPS/eip-140 (Accessed 08/2024)

Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter:
a smart contract security analyzer for composite vulnerabilities. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. p. 454-469. PLDI 2020, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3385412.3385990, https://
doi.org/10.1145/3385412.3385990

Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F., Gramoli, V., Holz, R.,
Scholz, B.: Vandal: A scalable security analysis framework for smart contracts.
arXiv preprint arXiv:1809.03981 (2018)

Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through co-
operation. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification. pp.
413-429. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

Buterin, V.: EIP-170: Contract code size limit (2016), ethereum Improvement
Proposals, no. 170, November 2016. [Online serial]. Available: https://eips.
ethereum. org/EIPS/eip-170 (Accessed 08,/2024)

Buterin, V.: Pragmatic destruction of SELFDESTRUCT (2024), https://hackmd.
io/@vbuterin/selfdestruct\#Pragmatic-destruction-of-SELFDESTRUCT (Ac-
cessed 08/2024)

Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y., Yang, Z.: scompile: Critical path iden-
tification and analysis for smart contracts. In: Formal Methods and Software En-
gineering: 21st International Conference on Formal Engineering Methods, ICFEM

22

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

2019, Shenzhen, China, November 5-9, 2019, Proceedings. p. 286-304. Springer-
Verlag, Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-030-32409-4 18,
https://doi.org/10.1007/978-3-030-32409-4_18

Chen, J., Xia, X., Lo, D., Grundy, J.: Why do smart contracts self-destruct? investi-
gating the selfdestruct function on ethereum. ACM Trans. Softw. Eng. Methodol.
31(2) (dec 2021). https://doi.org/10.1145/3488245, https://doi.org/10.1145/
3488245

Clarke, E.M.: Model checking. In: Foundations of Software Technology and The-
oretical Computer Science: 17th Conference Kharagpur, India, December 18-20,
1997 Proceedings 17. pp. 54-56. Springer (1997)

Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T,
Jones, R.B. (eds.) Computer Aided Verification. pp. 415-418. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2006)

Courant, N.,; Urban, C.: Precise widening operators for proving termination by
abstract interpretation. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 136—-152. Springer Berlin Heidelberg,
Berlin, Heidelberg (2017)

Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. p. 245-258. POPL ’12, Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2103656.2103687,
https://doi.org/10.1145/2103656.2103687

Crosara, M., Olivieri, L., Spoto, F., Tagliaferro, F.: Re-engineering erc-20 smart
contracts with efficient snapshots for the java virtual machine. In: 2021 Third
International Conference on Blockchain Computing and Applications (BCCA). pp.
187-194 (2021). https://doi.org/10.1109/BCCA53669.2021.9657047

Crosara, M., Olivieri, L., Spoto, F., Tagliaferro, F..: Fungible and non-
fungible tokens with snapshots in java. Cluster Computing 26(5), 2701-2718
(2023). https://doi.org/10.1007/s10586-022-03756-3, https://doi.org/10.1007/
s10586-022-03756-3

David, E.C.: The Hidden Dangers of Using Selfdestruct in Upgradable Smart Con-
tracts (2025), https://coinsbench.com/the-hidden-dangers-of-using-selfdestruct-
in-upgradable-smart-contracts-832466bf6b95 (Accessed 07,/2025)

D’Silva, V., Urban, C.: Conflict-driven conditional termination. In: Kroening, D.,
Pasareanu, C.S. (eds.) Computer Aided Verification. pp. 271-286. Springer Inter-
national Publishing, Cham (2015)

Entriken, W.: EIP-6049: Deprecate selfdestruct (2022), ethereum Improvement
Proposals, no. 6049, November 2022. [Online serial]. Available: https://eips.
ethereum. org/EIPS/eip-6046 (Accessed 08/2024)

European Parliament and the Council: Regulation (EU) 2023/2854 of the European
Parliament and of the Council of 13 December 2023 on harmonised rules on fair
access to and use of data and amending Regulation (EU) 2017/2394 and Directive
(EU) 2020,/1828 (Data Act) (2023), document 32023R2854. PE/49/2023/REV /1
OJ L, 2023/2854, 22.12.2023, ELI: http://data.europa.eu/eli/reg/2023/2854/
0j

Fu, M., Wu, L., Hong, Z., Zhu, F., Sun, H., Feng, W.: A critical-path-coverage-
based vulnerability detection method for smart contracts. IEEE Access 7, 147327
147344 (2019). https://doi.org/10.1109/ACCESS.2019.2947146

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, United States (1994)

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

An Overview of Termination in the Ethereum Blockchain 23

Genet., T., Jensen., T., Sauvage., J.: Termination of ethereum’s smart con-
tracts. In: Proceedings of the 17th International Joint Conference on e-Business
and Telecommunications - SECRYPT. pp. 39-51. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0009564100390051

Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) Au-
tomated Reasoning. pp. 281-286. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
max: surviving out-of-gas conditions in ethereum smart contracts. Proc. ACM
Program. Lang. 2(OOPSLA) (oct 2018). https://doi.org/10.1145/3276486, https:
//doi.org/10.1145/3276486

Hu, T., Li, B., Pan, Z., Qian, C.: Detect defects of solidity smart contract based
on the knowledge graph. IEEE Transactions on Reliability 73(1), 186-202 (2024).
https://doi.org/10.1109/TR.2023.3233999

Huang, Y., Wu, X., Wang, Q., Qian, Z., Chen, X., Tang, M., Zheng, Z.:
The sword of damocles: Upgradeable smart contract in ethereum. In: Proceed-
ings of the 32nd IEEE/ACM International Conference on Program Comprehen-
sion. p. 333-345. ICPC 24, Association for Computing Machinery, New York,
NY, USA (2024). https://doi.org/10.1145/3643916.3644426, https://doi.org/
10.1145/3643916.3644426

Initiative, E.C.: Europe’s Data Act: Implications for the Fu-
ture of Innovation in Europe (2024), available: https://eu.ci/

the-data-act-implications-for-the-future-of-smart-contracts-in-europe-annex/

(Accessed 08/2024)

Kwesili, O.: The Incompatibility of Self-Destruct Mechanisms in Upgrade-
able Smart Contract Architectures (2025), https://coinsbench.com/the-
incompatibility-of-self-destruct-mechanisms-in-upgradeable-smart-contract-
architectures-979f84619265 (Accessed 07/2025)

Le, T.C., Qin, S., Chin, W.N.: Termination and non-termination specifi-
cation inference. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. p. 489-498. PLDI
'15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2737924.2737993, https://doi.org/10.1145/2737924.
2737993

Le, T.C., Xu, L., Chen, L., Shi, W.: Proving conditional termination for smart
contracts. In: Proceedings of the 2nd ACM Workshop on Blockchains, Cryp-
tocurrencies, and Contracts. p. 57-59. BCC ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3205230.3205239,
https://doi.org/10.1145/3205230.3205239

Li, X., Yang, J., Chen, J., Tang, Y., Gao, X.: Characterizing ethereum upgradable
smart contracts and their security implications. In: Proceedings of the ACM on
Web Conference 2024. p. 1847-1858. WWW ’24, Association for Computing Ma-
chinery, New York, NY, USA (2024). https://doi.org/10.1145/3589334.3645640,
https://doi.org/10.1145/3589334.3645640

Marino, B., Juels, A.: Setting standards for altering and undoing smart contracts.
In: Alferes, J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) Rule
Technologies. Research, Tools, and Applications. pp. 151-166. Springer Interna-
tional Publishing, Cham (2016)

24

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

5.

56.

57.

58.

59.

L. Olivieri, L. Pasetto, L. Negrini, and P. Ferrara

Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design
smart contracts for ethereum. In: Financial Cryptography and Data Security:
23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, Febru-
ary 18-22, 2019, Revised Selected Papers. p. 446-465. Springer-Verlag, Berlin,
Heidelberg (2019). https://doi.org/10.1007,/978-3-030-32101-7 27, https://doi.
org/10.1007/978-3-030-32101-7_27

Mudge, N.: ERC-2535: Diamonds, multi-facet proxy (2020), ethereum Improve-
ment Proposals, no. 2535, February 2020 [Online serial]. Available: https://eips.
ethereum. org/EIPS/eip-2535 (Accessed 08/2024)

Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008), https:
//bitcoin.org/bitcoin.pdf Accessed: 06/2023

Nikoli¢, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A..: Finding the
greedy, prodigal, and suicidal contracts at scale. In: Proceedings of the
34th Annual Computer Security Applications Conference. p. 653-663. AC-
SAC ’18, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3274694.3274743, https://doi.org/10.1145/3274694.
3274743

Olivieri, L., Mukherjee, A., Chaki, N., Cortesi, A.: Cross-chain Smart Contracts
and dApps Verification by Static Analysis: Limits and Challenges. vol. 3962 (2025),
https://ceur-ws.org/Vol-3962/paperl6.pdf

Olivieri, L., Pasetto, L.: Towards Compliance of Smart Contracts with the Eu-
ropean Union Data Act. In: CEUR Workshop Proceedings. vol. 3629, p. 61 — 66
(2024), https://ceur-ws.org/Vol-3629

Olivieri, L., Pasetto, L., Negrini, L., Ferrara, P.: European Union Data Act and
Blockchain Technology: Challenges and New Directions. In: CEUR Workshop Pro-
ceedings. vol. 3791. CEUR-WS (2024), https://ceur-ws.org/Vol-3791/paper30.
pdf

Olivieri, L., Spoto, F.: Software verification challenges in the blockchain
ecosystem. International Journal on Software Tools for Technology Transfer
(2024). https://doi.org/10.1007/s10009-024-00758-x, https://doi.org/10.1007/
$10009-024-00758-x, published 2024/07/12

Olivieri, L., Spoto, F., Tagliaferro, F.: On-chain smart contract verification over
tendermint. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines, T., Klages-
Mundt, A., Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) Financial Cryptogra-
phy and Data Security. FC 2021 International Workshops. pp. 333—-347. Springer
Berlin Heidelberg, Berlin, Heidelberg (2021)

OpenZeppelin: Erc-20 pausable (2024), available: https://docs.openzeppelin.
com/contracts/4.x/api/token/erc20\#ERC20Pausable (Accessed 08/2024)
OpenZeppelin: Erc-20 snapshot (2024), available: https://docs.openzeppelin.
com/contracts/4.x/api/token/erc20#ERC20Snapshot (Accessed 08/2024)
OpenZeppelin: Erc-721 pausable (2024), available: https://docs.openzeppelin.
com/contracts/4.x/api/token/erc721\#ERC721Pausable (Accessed 08/2024)
Patrick, C.: Principles of Abstract Interpretation. MIT Press Academic, Cam-
bridge, MA, USA (2021)

Popper, N.: A Hacking of More Than $50 Million Dashes Hopes in the World of
Virtual Currency. The New York Times (2016), june 17th

Rajasekar, V., Sondhi, S., Saad, S., Mohammed, S.: Emerging design patterns for
blockchain applications. In: ICSOFT. pp. 242-249 (2020)

Ressi, D., Spano, A., Benetollo, L., Piazza, C., Bugliesi, M., Rossi, S.: Vulnerability
detection in ethereum smart contracts via machine learning: A qualitative analysis.
arXiv preprint arXiv:2407.18639 (2024)

60.

61.

62.

63.

64.

65.

An Overview of Termination in the Ethereum Blockchain 25

Rice, H.G.: Classes of Recursively Enumerable Sets and Their Decision Prob-
lems. Transactions of the American Mathemathical Society 74, 358-366 (1953).
https://doi.org/10.1090/s0002-9947-1953-0053041-6

Seneviratne, O.: The feasibility of a smart contract "kill switch". In: 2024 6th
International Conference on Blockchain Computing and Applications (BCCA). pp.
473-480 (2024). https://doi.org/10.1109/BCCA62388.2024.10844477

Urban, C., Miné, A.: A decision tree abstract domain for proving conditional termi-
nation. In: Miiller-Olm, M., Seidl, H. (eds.) Static Analysis. pp. 302-318. Springer
International Publishing, Cham (2014)

Wasiu, A.: Mastering Solidity: require and Custom Errors in Ethereum Con-
tracts (2023), https://medium.com/coinmonks/mastering-solidity-require-and-
custom-errors-in-ethereum-contracts-b491565f1592 (Accessed 05/2025)

Wohrer, M., Zdun, U.: Smart contracts: security patterns in the
ethereum ecosystem and solidity. In: 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). pp. 2-8 (2018).
https://doi.org/10.1109/TWBOSE.2018.8327565

Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1-32 (2014)

