
MichelsonLiSA: A Static Analyzer for Tezos
Luca Olivieri

University of Verona
Corvallis S.r.l.

Verona/Padua, Italy
luca.olivieri@univr.it

Thomas Jensen
INRIA

Rennes, France
thomas.jensen@inria.fr

Luca Negrini
Ca’ Foscari University of Venice

Corvallis S.r.l.
Venice/Padua, Italy
luca.negrini@unive.it

Fausto Spoto
University of Verona

Verona, Italy
fausto.spoto@univr.it

Abstract—Smart contracts are immutable code deployed in a
blockchain, whose execution modifies its global state. Code im-
mutability leads to immutable bugs. To prevent such bugs, static
program analysis infers information about the behavior of the
code, statically, before code execution and deployment. This paper
introduces MichelsonLiSA, a static analyzer based on abstract
interpretation for the verification of smart contracts written in
the Michelson low-level language of the Tezos blockchain. It
applies MichelsonLiSA to the identification of security issues
arising from cross-contract invocations.

Index Terms—Program analysis, smart contracts, injection,
blockchain, Michelson language, Tezos.

This is a pre-print version of L. Olivieri, T. Jensen, L.
Negrini and F. Spoto, ”MichelsonLiSA: A Static Analyzer
for Tezos,” 2023 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affili-
ated Events (PerCom Workshops), Atlanta, GA, USA, 2023, pp.
80-85, doi: 10.1109/PerComWorkshops56833.2023.10150247.

I. INTRODUCTION

Blockchains are trustless distributed systems, whose peers
do not trust each other. Data and code in blockchain are
immutable and accessible to everybody, at any time, for
transparency and to achieve trustlessness. However, malicious
peers can fully and directly access data and code. This code,
known as smart contracts, are executable programs that modify
the world state of the blockchain. They are historically applied,
for instance, to the management of financial assets.

Immutable code means immutable bugs, exploitable for
security attacks. Static program analysis helps here, by in-
ferring the run-time behavior of the smart contracts, statically,
before code execution and deployment, thus preventing the
exploitation of the bugs.

This paper introduces MichelsonLiSA, a static analyzer
based on abstract interpretation [1] that verifies smart contracts
written in the Michelson low-level language of the Tezos
blockchain. It builds on LiSA [2], [3] (Library for Static
Analysis), a framework that can be adapted to different pro-
gramming languages, mainly variable-based.

The contributions of this paper are (1) the definition of
a translation from the stack-based form of Michelson to a
variable-based static single assignment (SSA) language, better
suited for static analysis in LiSA; (2) a new static analysis for
identifying security issues related to cross-contract invocations
(a form of code injection), that can be performed over a

parameter (pair int int) ; # Parameter declaration: two
integers

storage int ; # Storage declaration
code { # Code declaration

CAR ; # Push the input parameter to the stack and discard
the current storage value

UNPAIR ; # Pop the input pair from the stack, split it
into two integers and push them on the stack instead

ADD ; # Pop the two integers and push their sum instead

NIL operation ; # Push an empty list of operations
required to end the contract

PAIR ; # Build the final stack: a pair consisting of a
list of operations and the value to keep in storage (
in this case, the result of addition)

}

Fig. 1: A Michelson smart contract to add two input integers
and store their sum in blockchain.

preliminary taint analysis. The resulting analyzer is available
at https://github.com/lisa-analyzer/michelson-lisa.

Paper structure: Sec. II introduces the Michelson lan-
guage. Sec. III describes MichelsonLiSA and its design
choices, such as the the SSA form of the code. Sec. IV
defines the cross-contract invocation analysis implemented on
MichelsonLiSA. Sec. V highlights the limits of the analysis.
Sec. VI reports related work and concludes.

II. THE MICHELSON LANGUAGE

The Tezos blockchain provides a toolbelt (IDEs, command-
line interface, transaction explorer) allowing programmers to
implement smart contracts in high-level program languages
such as Python, OCaml or JavaScript. All such languages
are compiled into a unique native low-level language, called
Michelson, that is then deployed in blockchain. It is a domain-
specific language, statically typed and stack-based. It has no
fields nor global variables. Its instruction set is low-level but
Turing-complete. Michelson smart contracts are specified by
three components: (1) a parameter declaration (explicitly typed
input); (2) a storage declaration (explicitly typed blockchain
store locations); and (3) a code declaration (a sequence of
bytecode instructions). Technically, the input is a single value
that specifies the required inputs for executing the code.
However, the use of aggregate types (e.g., pair and or)
enables the specification of several inputs, as Fig. 1 shows.

Stack

Pair(Pair(5, 9), 0)

Stack

Pair(5, 9)

Stack

9

5

Stack

14

Stack

14

list operation {}

Stack

Pair (list operation {}, 14)

The current value
in storage of
blockchain

The parameter
value as input
to the smart
contract

CAR UNPAIR ADD NIL PAIR

Consume a pair
and push the left
value on the top
of the stack

Consume a pair
and push the two
values on the top
of the stack

Consume two values on the top
of the stack. After, it perform
and addition and push the result
on the top of the stack

Push an empty
list of operation
type on the top
of the stack

Consume the two
top elements and
return a pair of
them

The new storage
value proposed
in blockchain

List of internal
operations required at
the end of execution

Fig. 2: An example of execution of the smart contract in Fig. 1.

Michelson’s instructions pop and/or push stack elements.
A smart contract execution request (invocation) specifies the
address of the smart contract in blockchain and its input. The
execution starts from a stack whose only element is a pair of
the input and of the current value of the storage of the contract.
Fig. 2 shows an example of execution of the contract in Fig. 1,
with input Pair(5,9), assuming that the current value of
the storage of the contract is 0: the initial stack contains the
singleton value Pair(Pair(5,9),0). Note that the user
provides the input, while the blockchain protocol retrieves the
storage value from the blockchain state. The first instruction,
CAR, splits the pair and projects it on its first component
Pair(5,9) (the input), that is then pushes on the stack: the
current storage value is discarded. The subsequent UNPAIR
instruction decomposes Pair(5,9) into its two components
5 and 9, that are pushed on the stack. The ADD instruction
computes their sum 14, that becomes the stack top. The NIL
instruction pushes an empty list of operations to perform at
the end of the execution and the final PAIR instruction boxes
the list and the result into a pair: the result of the execution.
The blockchain protocol will store the second component (14)
in the storage of the contract, for future use.

Michelson has around 100 instructions1: stack manipula-
tions (PUSH, DROP, SWAP), high-level data structures creators
and modifiers (MAP, UPDATE, SIZE), arithmetic operations
(SUM, SUB, AND), control flow modifiers (IF, LOOP), and
blockchain-specific operations (see Tab. I). This paper focuses
on the most interesting ones.

III. AN OVERVIEW OF MICHELSONLISA

MichelsonLiSA is a static analyzer for Tezos smart contracts
written in Michelson, based on abstract interpretation. It relies
on LiSA [2], [3], that implements standard components for
abstract interpretation, such as a control-flow graphs (CFG),
a framework with several built-in static analyses (such as
type analysis and information flow analysis), and fixpoint al-
gorithms. MichelsonLiSA implements additional components
managing the translation from Michelson to the intermediate
representation (IR) of LiSA. Next section presents these com-
ponents and the challenges faced to support Michelson.

A. Parsing and CFG Construction

The first step to verify and analyze a smart contract is
to parse its syntax. Michelson has an official grammar, but

1https://tezos.gitlab.io/active/michelson.html#core-instructions
2http://tezos.gitlab.io/active/glossary.html#implicit-account
3http://tezos.gitlab.io/active/glossary.html#voting-period

TABLE I: A subset of the Michelson blockchain instructions.

Instruction Description
ADDRESS pop a contract value from the stack and push the address

of that contract to the stack.
AMOUNT push the amount of the current transaction to the stack.
BALANCE push the current amount held by the executing contract

to the stack.
CHAIN_ID push the chain identifier to the stack (an identifier for

a chain, used to distinguish the test and the main chains).
CONTRACT replace the top of the stack after cast to a contract type.
CREATE_CONTRACT push a contract creation operation to the stack. It allows

a contract to create another contract.
IMPLICIT_ACCOUNT push the address of a new implicit account2 to the stack.
LEVEL push the current block level to the stack.
NOW push the current block timestamp to the stack.
SELF push the current contract as element of type contract

to the stack.
SELF_ADDRESS push the address of the current contract to the stack.
SENDER push the contract that started the current internal

transaction to the stack.
SET_DELEGATE push a delegation operation to the stack. An account can

delegate their rights to participate in consensus and in
governance to another account.

SOURCE push the contract that initiated the current transaction
to the stack.

TOTAL_VOTING_POWER push the total voting power value of all contracts to the
stack. It is based on the staking balances of the contracts
involved in a given voting period3.

TRANSFER_TOKENS push a transaction operation to the stack.
VOTING_POWER push the voting power value of a contract to the stack. It

is based on the staking balance of the contract in a given
voting period.

that misses some syntactic sugar (such as annotations, use of
brackets, smart contract structure, and macros) widely used
in real-world contracts. Hence, we enriched the grammar and
implemented it with ANTLR [4], a popular parser generator
that builds a lexer and a parser from the grammar. The lexer
reads the source and produces a sequence of meaningful
strings (lexemes); the parser takes them as input and builds
an abstract syntax tree (AST) that reflects the grammar, or
otherwise rejects the program with a syntax error. From the
AST, it is possible to build an analyzer able to perform
syntactic checks, but the AST has limited expressiveness.
However, the AST is a good starting point for building a
CFG, from where the missing expressiveness can be recovered.
The CFG building phase starts after the parsing of Michelson
source code into syntax trees. The CFG builder translates the
code into an IR based on SSA form [5], [6] and builds the
LiSA CFGs.

B. Intermediate Representation in SSA Form

Michelson is a low-level, stack-based language. According
to [7], the use of a stack makes it difficult to apply standard
static analysis techniques. Therefore, an IR is necessary to
provide an efficient model for the analysis in terms of trans-
formation time and produced code. LiSA is designed to handle

0: PUSH int 23;
1: PUSH int 13;
2: SUB;
3: DROP;
4: PUSH int 23;
5: PUSH int 13;
6: PAIR;
7: UNPAIR;
8:

(a) Michelson code

0: []
1: [v1]
2: [v1,v2]
3: [v3]
4: []
5: [v4]
6: [v4,v5]
7: [v6]
8: [v7, v8]

(b) Symbolic stack

0: v1 = PUSH(int, 23);
1: v2 = PUSH(int, 13);
2: v3 = SUB(v1,v2);
3: DROP(v3);
4: v4 = PUSH(int, 23);
5: v5 = PUSH(int, 13);
6: v6 = PAIR(v4,v5);
7: v7 = get_left(v6);

v8 = get_right(v6);
8:

(c) SSA form

Fig. 3: Example of transformation to SSA form.

a generic program language but is currently variable-oriented.
For this reason, we translate the stack-based representation into
a variable-based IR, by using the SSA form. The translation
maps each Michelson instruction into a list of MichelsonLiSA
instructions, by using new fresh variables. It tracks, abstractly,
the values on the stack through a symbolic stack of such
variables. Stack elements are thus identified through symbolic
names instead of their exact values. Instructions that push
values on the stack are translated into variable assignments,
with fresh variables standing for stack elements, each assigned
exactly once. Instructions that pop from the stack are translated
into MichelsonLiSA instructions taking those variables as
parameters. Some instructions can both pop and push stack
elements. Fig. 3 shows an example of translation to SSA for
some common instructions. PUSH <type> <data> pushes
a constant of the declared type: it is translated with a fresh new
variable that gets assigned a constant of a declared type. SUB
consumes its two operands from the stack and pushes their
difference instead: it is translated as a function that receives
the operands as arguments and yields their difference. DROP
pops and discards the top of the stack: it is translated with a
function with no return value and in this case the stack top is
discarded from the symbolic stack. PAIR consumes the two
topmost stack elements, packs them into a pair that pushes
on the stack instead: it is translated as a function with two
arguments that yields the pair. UNPAIR pops a pair, splits it
and pushes its two components instead: it is translated with
two functions, that select the two components and store them
into fresh new variables.

Michelson includes instructions for conditionals, such as
IF, and for iteration, such as LOOP, both leading to branches
and junction points. For junctions, SSA reconciles distinct
values of the same variable, arising along different paths,
through φ-functions [6], as shown in Fig. 4. The idea is to
translate instructions separately along each path using disjoint

0: IF
1: { # True branch
2: PUSH int -1;
3: }
4: { # False branch
5: PUSH int 7;
6: }
7:

(a) Michelson code

0: stack [v0]
1: stack []
2: stack1 []
3: stack1 [v1]
4: stack1 [v1]
5: stack2 [v2]
6: stack1 [v1],

stack2 [v2]
7: stack [v3]

(b) Symbolic stack

0: IF(v0)
1: { # True branch
2: v1 = PUSH(int,-1);
3: }
4: { # False branch
5: v2 = PUSH(int, 7);
6: } v3 = phi(v1, v2) #

Junction point
7:

(c) SSA form

Fig. 4: Example of transformation of a conditional into SSA
form, with a junction point. The φ-function is written as phi.

parameter (pair int int);
storage int;
code {
CAR;
DUP;
UNPAIR;
COMPARE;
GT;
IF
{ # True branch
UNPAIR;
ADD;

}
{ # False branch
UNPAIR;
SUB;

}

NIL operation;
PAIR;

}

(a) Michelson code

v0 = parameter_storage();
v1 = CAR(v0);
v2 = DUP(v1);
v3 = get_left(v2);
v4 = get_right(v2);
v5 = COMPARE(v3, v4);
v6 = GT(v5);
IF(v6)
{ # True branch
v7 = get_left(v1);
v8 = get_right(v1);
v9 = ADD(v7, v8);

}
{ # False branch
v10 = get_left(v1);
v11 = get_right(v1);
v12 = SUB(v10, v11);

}
v13 = phi(v9, v12);

v14 = NIL(operation);
v15 = PAIR(v14, v13);

(b) SSA form

Fig. 5: Michelson code and its SSA form. Given a parameter,
the contract performs an addition if the first component of the
input pair is larger than the second one; otherwise, it performs
a subtraction. The result is a pair consisting of an empty list
of operations and of the new value for the storage data.

sets of variables, and then merging them at the junction point
into unique fresh variables, each standing for the same stack
element along distinct paths.

Fig. 5 reports the translation of a realistic Michelson
contract into SSA and the corresponding symbolic stack.
Michelson smart contracts interact with the context of Tezos
where they execute. In fact, at the beginning of their execution,
the stack holds a pair of the input value and of the current
storage value. This must be made explicit in the SSA trans-
lation, as in Fig. 5 with v0 = parameter_storage().
Instrumentation is needed for data structures as well. Namely,

Michelson supports high-level data structures (sets, lists, maps,
optionals) and has specific instructions to operate on them,
such as ITER, LOOP_LEFT and IF_CONST. These typically
push additional elements on the stack. For instance, ITER
consumes a collection from the stack and applies a set of
instructions to each of its elements. These gets simulated, in
SSA, by using assignments to additional variables.

C. Analysis

MichelsonLiSA analyzes the SSA code once it is put
inside a control-flow graph (CFG), that expresses the control
structure of the code. LiSA uses a general design for CFGs, so
that they apply to different programming languages. Namely,
a LiSA CFG has nodes standing for syntactic statements and
edges that represent flow of control among them. Each state-
ment is then rewritten into symbolic expressions, that is, ex-
pressions in the internal language of LiSA used to implement
the semantics of the statements in a language-independent way.
Such symbolic expressions are low-level atomic instructions
that can be composed to model the semantics of many source
languages. The concrete behaviors of a program (the concrete
semantics) expressed through symbolic expressions are then
approximated (i.e., abstracted) into an abstract version of them
(the abstract semantics) [1]. The different forms of abstraction
over the semantics are called abstract domains. The abstract
semantics of a CFG is defined as a fixpoint, that will be
reached in a finite number of iterations if the abstract domain
has finite height, or through the use of widening operators [1].
The abstract states computed during that fixpoint computation
are a sound over-approximation of the concrete semantics of
the program, that a checker can use to issue warnings.

IV. CROSS-CONTRACT INVOCATION ANALYSIS

This section shows an example of the analysis that we have
implemented in MichelsonLiSA. It spots potential situations
where an arbitrary code injection is possible, leading to
the execution of arbitrary code in blockchain. Namely, the
methods of a smart contract C in blockchain can be executed
directly, with a call originated from outside the blockchain,
or indirectly, as an internal cross-contract call from inside
another contract. This latter case is used for instance to query
the state of C or to execute one of its external methods. A
typical example is the execution of a token transfer from a
contract A to a contract C. This requires an internal cross-
contract call which, in the case of token transfer, in Michelson
can be performed by using the TRANSFER_TOKENS instruc-
tion4. C does not necessarily have to be hardcoded as target
contract into contract A, since it can be passed as a parametric
input to A (by specifying a contract type element in the
parameter declaration of the contract A) and then used by
TRANSFER_TOKENS. However, inputs coming from outside
the blockchain are untrusted: in permissionless blockchains
such as Tezos, any user can provide inputs, while potentially
being anonymous. This is fine as long as the method of C

4https://tezos.gitlab.io/michelson-reference/#instr-TRANSFER TOKENS

TABLE II: Cross-contract analysis of our benchmark.

Analysis Exec. time Avg. time per file # Warnings
UCCI 2 hours 32 min 8 sec 9.12 sec 2834

that gets invoked is not redefined. Otherwise, it is possible
to induce the execution of the arbitrary code placed in its
redefinition. That code could move assets or currencies among
contracts, in a way that was not expected.

In order to spot such dangerous code, we have implemented
and applied a taint analysis [8] to Michelson code, inside
MichelsonLiSA. Taint analysis is an instance of information
flow analysis [9], that detects if untrusted information ex-
plicitly flows from some source into critical program points,
called sink. It has been already successfully applied to dif-
ferent industrial contexts [8], [10], [11]. In our case, we
use it to spot untrusted cross-contract invocations (UCCI).
Namely, the sources are calls to parameter_storage()
(see Sec. III-B) while the sinks are the parameter of cross-
contract TRANSFER_TOKENS that holds the contract that
receives that call.

The experimental evaluation of our analysis was performed
on 1000 Michelson smart contracts containing the instruction
TRANSFER_TOKENS, randomly retrieved from [12]. This re-
sulted in 770060 lines of code (LoCs). The testing environment
was a HP EliteBook 850 G4 equipped with an Intel Core i7-
7500U at 2,70/2,90 GHz and 16 GB of RAM memory running
Windows 10 Pro 64bit, Oracle JDK version 13. Readers
who want to run the experiments and inspect the results can
download the code5 and follow the instructions contained in
the file README.md.

1 parameter address ;
2 storage unit ;
3 code {
4 DUP ;
5 CDR ;
6 SWAP ;
7 CAR ;
8 DUP ;
9 NIL operation ;

10 SWAP ;
11 CONTRACT unit ;
12 { IF_NONE { PUSH

unit Unit ;
FAILWITH } {} }
;

13 AMOUNT ;
14 PUSH unit Unit ;
15 TRANSFER_TOKENS ;
16 CONS ;
17 SWAP ;
18 DROP ;
19 PAIR
20 }

(a) Michelson smart contract

v0 = parameter_storage();
v1 = DUP(v0);
v2 = CDR(v1);
SWAP();
v3 = CAR(v0);
v4 = DUP(v3);
v5 = NIL();
SWAP();
v6 = CONTRACT(v4);
IF v7 = extract_value(v6) is

None {
v8 = PUSH("Unit");
FAILWITH();

}
v9 = AMOUNT();
v10 = PUSH("Unit");
v11 = TRANSFER_TOKENS(v10,v9,

v7);
v12 = CONS(v11, v5);
SWAP();
DROP();
v13 = PAIR(v12, v2);

(b) Michelson IR in SSA form

Fig. 6: Smart contract expruqYPRHnQyNih8sK1vhNLRBLx-
37VeuZ3T58SWaxPj5WwbCQJb2V.tz.

5git clone -branch brain2023 https://github.com/
lisa-analyzer/michelson-lisa.git

Tab. II reports the results of the experimental evaluation.
In terms of time, the analysis requires less than 10 seconds
per smart contract, on average. About the results, the anal-
ysis issues warnings about 2834 cross-contract invocations
distributed in 781 smart contracts. Since Michelson is a low-
level language, it is rather difficult to reverse-engineer the
code: high-level information is lost after compilation. At the
end of the analysis, MichelsonLiSA can provide an additional
reports containing the analyzed CFGs in various formats (html,
dot, etc.) with details about the computed abstract states. This
allows one to check, for each program point, which variables
the analysis infers as tainted and which it doesn’t. However,
for a deep manual investigation capable of identifying any
over-approximations and false positives, one should manually
recompute the entire execution stack for each single instruction
and check if its execution in the real world can lead to a
tainted value or not compared to the MichelsonLiSA report.
This activity is time consuming given the poor readability
of Michelson and the complexity of some contracts. For this
reason, we could not manually investigate each of these files
and compute the rate of true to false positives. In the following,
we discuss few examples that show the strength of the analysis.

We have identified a true positive warning, that is, a
dangerous UCCI in a smart contract inside our bench-
mark. Figure 6 shows the smart contract. MichelsonLiSA
detects a flow leading to an UCCI. It begins at v0 =
parameter_storage(), the information is propagated
into v3 = CAR(v0) and then into v4 = DUP(v3). At
this point, the untrusted information flows into v6 =
CONTRACT(v4). The instruction CONTRACT allows to cast
from an address to a typed contract. In terms of our analysis,
when untrusted information flows into CONTRACT, this means
that a potentially untrusted address is cast to a contract,
which in turn will be untrusted thanks to the information
flow propagation. Going forward, the untrusted information
is propagated into v7 = extract_value(v6), which fi-
nally flows into TRANSFER_TOKENS(v10,v9,v7), where
the analysis detects that an untrusted contract is invoked.
The instruction TRANSFER_TOKENS allows one to transfer
an amount of tokens to a target contract with its parameter.
In this case, the amount of currency is loaded by v9 =
AMOUNT(), the parameter by v10 = PUSH("Unit") and
in both the information is propagated in a trusted way because
it is not coming nor inferred from sources considered untrusted
by our analysis. The target contract v7, as just shown, is
the propagation result of the untrusted information. Then, a
transaction of an amount is made to an untrusted contract.

We have identified a true negative in a smart contract in our
benchmark. Figure 7 shows its code. MichelsonLiSA does not
detect any untrusted flow that leads to an UCCI. The analysis
starts by propagating the parameter and storage inputs in v0
= parameter_storage(). The untrusted value of v0 is
used only after TRANSFER_TOKENS (the sink for the analy-
sis), then it cannot affect the cross-contract invocation. Indeed,
this sink targets only a contract derived by the hardcoded
address declared in v3 = PUSH("tz1Rwo...Gv1ir"),

therefore the address cannot be changed by any arbitrary input,
which ensures its safety against UCCIs.

1 parameter unit ;
2 storage unit ;
3 code {
4 CDR ;
5 NIL operation ;
6 PUSH address "tz1Rwo

...Gv1ir" ;
7 CONTRACT unit ;
8 IF_NONE { FAILWITH }
9 { BALANCE ;

10 UNIT ;
11 TRANSFER_TOKENS ;
12 CONS ;
13 PAIR }
14 }

(a) Michelson smart con-
tract

v0 = parameter_storage();
v1 = CDR(v0);
v2 = NIL();
v3 = PUSH("tz1Rwo...Gv1ir");
v4 = CONTRACT(v3);
IF v5 = extract_value(v4) is

None {
FAILWITH();

} ELSE {
v6 = BALANCE();
v7 = UNIT();
v8 = TRANSFER_TOKENS(v7,v6,

v5);
v9 = CONS(v8,v2);
v10 = PAIR(v9,v1);

}

(b) Michelson IR in SSA form

Fig. 7: Smart contract exprthPm93Nt4TBdDSd9LVG829Ycg-
bK9VKE4TRDXtZiU8Fv7gFEBod.tz.

V. LIMITS OF THE ANALYSIS AND APPROXIMATION

Abstract interpretation is based on approximations. It ap-
proximates the concrete semantics with an abstract semantics.
The abstraction is a necessary step to perform analyses that
detect otherwise undecidable properties, that is, abstractions
trade precision for decidability. Moreover, different abstrac-
tions can be used in abstract interpretation to prove pro-
gram properties. In particular, our analysis applies an over-
approximating abstraction to detect UCCIs and leads to false
alarms: warnings that do not correspond to any real issue.
Consider the code in Fig. 8. Its untrusted input is used to
index a map containing hardcoded addresses. The analysis
starts by propagating the parameter and storage inputs in
v0 = parameter_storage(). The untrusted informa-
tion of v0 flows into v1 = CAR(v0) and then into v3 =
GET(v1,v2). Given a key and a map, the instruction GET
retrieves a value from the map. Therefore, the input parameter
is used to select a hardcoded address from a map. However, our
analysis propagates the untrusted information to v3 because
at least one of the two variables in GET(v1,v2) is un-
trusted. Going forward, that untrusted information propagates
to v4 = extract_value(v3), v6 = CONTRACT(v4),
and v7 = extract_value(v6). From there, it flows into
TRANSFER_TOKENS(v10,v9,v7), where the analysis is-
sues a warning since v7 is untrusted. However, that warning
is a false positive. Namely, the input determines the choice
of the contract, but the choice is made over a read-only map
of harcoded addresses and the cross-contract invocation leads
to a known contract, always. In general, the precision of
an analysis depends on its abstraction level, which is often
inversely related to its performance. In future works, more
precise abstractions will be considered.

VI. CONCLUSION AND RELATED WORK

This paper presents MichelsonLiSA, an abstract
interpretation-based static analyzer for Tezos smart contracts.

1 parameter int ;
2 storage unit ;
3 code {
4 CAR ;
5 PUSH (map int address)

{
6 Elt 0 "tz1KqT...

b7QbPE" ;
7 Elt 1 "tz2VGB...

S6rna5"} ;
8 SWAP;
9 GET ;

10 IF_NONE { PUSH string
"key not found" ;
FAILWITH }

11 {
12 CONTRACT unit ;
13 IF_NONE { PUSH

string "invalid
contract" ;
FAILWITH }{};

14 AMOUNT ;
15 UNIT ;
16 TRANSFER_TOKENS ;
17 NIL operation ;
18 SWAP;
19 CONS ;
20 UNIT ;
21 SWAP;
22 PAIR }
23 }

(a) Michelson smart contract

v0 = parameter_storage();
v1 = CAR(v0);
v2 = PUSH(map { 0 : "tz1KqT...

b7QbPE", 1 : "tz2VGB...S6rna5
" });

v3 = GET(v1,v2);
IF v4 = extract_value(v3) is None

{
v5 = PUSH ("key not found");
FAILWITH();

}
v6 = CONTRACT(v4)
IF v7 = extract_value(v6) is None

{
v8 = PUSH ("invalid contract");

}
v9 = AMOUNT();
v10 = UNIT();
v11 = TRANSFER_TOKENS(v10,v9,v7);
v12 = NIL();
SWAP();
v13= CONS(v11,v12);
v14= UNIT();
SWAP();
v15=PAIR(v13,v14);

(b) Michelson IR in SSA form

Fig. 8: A smart contract that allows one to transfer an amount
of tokens to an address that can be selected by the input
parameter among those contained in a hard-coded map.

It supports non-trivial analyses that proved to be applicable on
real code. Experiments show that UCCIs happen frequently in
real-world contracts, an our approach can successfully identify
them. In future work, other analyses will be developed and the
UCCI analysis will be improved wrt. precision and efficiency.
Furthermore, we will also study UCCIs for blockchain
frameworks written in other programming languages and
supported by LiSA, such as for Go [13].

Related Work. Other several tools exist for the verification of
smart contracts, but only a few apply to Michelson. Bernardo
et al. [14] define Mi-Cho-Coq, a Coq framework to verify
the functional correctness of Michelson contracts. They also
introduce an intermediate language called Albert, that provides
a high-level stack abstraction based on linearly-typed records
that can be exploited by Mi-Cho-Coq. Arrojado et al. [15]
propose a Why3 prover for deductive verification of Michelson
contracts. The use of Coq or Why3 relies on theorem proving,
that requires formal specifications of the expected behavior of
the code, such as pre- or post-conditions. Therefore, unlike
MichelsonLiSA, their approach is not fully automatic. The
same holds for Nishida et al. [16], who define a tool to
typecheck Michelson smart contracts against a user-provided
specification based on a type system, by using the Z3 solver.
Reis et al. [17] describe an IR called Tezla that linearizes
the stack into a store of variables and can be combined with
SoftCheck for data-flow analyses. The approach is similar to

ours, especially regarding IR forms, but we focus on an ana-
lyzer based on abstract interpretation instead. Bau et al. [18]
present a static analyzer for Michelson based on MOPSA [19],
an abstract interpretation framework. MOPSA is the major
alternative to LiSA. It is designed to compute fixpoints by
induction on a program’s syntax and considers a program as
an extensible AST that initially contains the original source
code, but that can be syntactically and semantically rewritten
during the analysis. Regarding IR forms, our IR is similar
also to that of BC2BIR [7], that transforms Java bytecode into
variable assignments, including exception flows, and is based
on a symbolic stack execution. However, it is variable-based
without being in SSA form. Indeed, it does not guarantee SSA
of variables in linear code, it does not use φ-functions and
variables are assigned several times before a junction point.

REFERENCES

[1] P. Cousot, Principles of Abstract Interpretation. MIT Press, 2021.
[2] P. Ferrara, L. Negrini, V. Arceri, and A. Cortesi, “Static analysis for

dummies: Experiencing lisa,” in 10th International Workshop on the
State Of the Art in Program Analysis, 2021, p. 1–6.

[3] L. Negrini, “A generic framework for multilanguage analysis,” PhD
thesis, Ca’ Foscari University of Venice, Italy, 2023.

[4] T. Parr, “ANTLR Website,” https://www.antlr.org/ Accessed 07/2022.
[5] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers

and redundant computations,” in 15th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, ser. POPL ’88. New
York, NY, USA: Association for Computing Machinery, 1988, p. 12–27.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and
Systems, vol. 13, pp. 451–490, 1991.

[7] D. Demange, T. Jensen, and D. Pichardie, “A provably correct stackless
intermediate representation for java bytecode,” in Asian Symposium on
Programming Languages and Systems. Springer, 2010, pp. 97–113.

[8] M. D. Ernst, A. Lovato, D. Macedonio, C. Spiridon, and F. Spoto,
“Boolean Formulas for the Static Identification of Injection Attacks
in java,” in 20th International Conference Logic for Programming,
Artificial Intelligence, and Reasoning, vol. 9450. Springer, 2015, pp.
130–145.

[9] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, 2003.

[10] A. K. Mandal, P. Ferrara, Y. Khlyebnikov, A. Cortesi, and F. Spoto,
“Cross-program taint analysis for IoT systems,” in 35th Symposium on
Applied Computing, online event, [Brno, Czech Republic]. ACM, 2020,
pp. 1944–1952.

[11] P. Ferrara, L. Olivieri, and F. Spoto, “Static Privacy Analysis by Flow
Reconstruction of Tainted data,” Int. J. Softw. Eng. Knowl. Eng., vol. 31,
no. 7, pp. 973–1016, 2021.

[12] J. S. Reis, “Tezla test repository,” https://github.com/joaosreis/tezla/tree/
main/tests. Commit:baacf2a79f8ac1fee8b5200395ffc14d5b9922e6 Ac-
cessed 09/2022.

[13] L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi,
P. Ferrara, F. Spoto, and E. Talin, “Ensuring determinism in blockchain
software with golisa: an industrial experience report,” in 11th Interna-
tional Workshop on the State Of the Art in Program Analysis, 2022, pp.
23–29.

[14] B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, and
J. Tesson, “Making tezos smart contracts more reliable with coq,”
in International Symposium on Leveraging Applications of Formal
Methods. Springer, 2020, pp. 60–72.

[15] L. P. Arrojado da Horta, J. Santos Reis, M. Pereira, and S. Melo de
Sousa, “Whylson: Proving your michelson smart contracts in why3,”
arXiv e-prints, pp. arXiv–2005, 2020.

[16] Y. Nishida, H. Saito, R. Chen, A. Kawata, J. Furuse, K. Suenaga, and
A. Igarashi, “Helmholtz: A Verifier for Tezos Smart Contracts Based
on Refinement Types,” New Generation Computing, vol. 40, no. 2, pp.
507–540, 2022.

[17] J. S. Reis, P. Crocker, and S. M. de Sousa, “Tezla, an intermediate
representation for static analysis of michelson smart contracts,” arXiv
preprint arXiv:2005.11839, 2020.

[18] G. Bau, A. Miné, V. Botbol, and M. Bouaziz, “Abstract interpretation
of michelson smart-contracts,” in 11th International Workshop on the
State Of the Art in Program Analysis, 2022, pp. 36–43.

[19] A. Miné, A. Ouadjaout, and M. Journault, “Design of a modular platform
for static analysis,” in 9th Workshop on Tools for Automatic Program
Analysis, 2018.

