Don’t Panic: Error Handling Patterns in Go Smart
Contracts and Blockchain Software

Luca Olivieri
Ca’Foscari University of Venice
Venice, Italy
luca.olivieri @unive.it
0000-0001-8074-8980

Abstract—TIssues in error handling may have critical conse-
quences in blockchain software, ranging from silent execution
with invalid states to denial of services due to unexpected
crashes. This paper discusses the pitfalls of errors handling within
blockchain frameworks written in Go such as Hyperledger Fab-
ric, Tendermint Core (including its derivatives, e.g. CometBFT,
Ignite), and other frameworks (e.g. Cosmos SDK), as well as
the Ethereum implementation. Then, it explores how a static
analysis approach can be applied for the automatic detection of
such of issues, allowing to fix buggy code before deployment,
i.e., when the code becomes difficult to patch being blockchain a
trustless, distributed, and decentralized environment. Finally, we
evaluate our analysis implementation within GOLiSA on a set of
existing smart contracts and blockchain applications, empirically
demonstrating the feasibility of the proposed approach.

Index Terms—Blockchain, Smart Contracts, Error Handling
Exception Handling, Program Verification, Static Analysis,
Golang, Hyperledger Fabric, Chaincode, Cosmos SDK, Tender-
mint Core, Ignite, CometBFT, Ethereum

I. INTRODUCTION

Error handling is a fundamental aspect of software develop-
ment, and should be considered as important as any other core
component of the codebase. Depending on the programming
language, errors can manifest in a number of ways: exceptions
(handled through try-catch blocks), error codes (that must be
manually checked), and many more. Go’s approach to error
handling is distinct from that of many other languages and may
lead to subtle issues if not managed carefully. Specifically, Go
functions might return a special value of type error which
indicates that an error has occurred. Go developers thus need
to manually check the non-nullity of error values returned by
functions, making error-checking explicit. Furthermore, Go
provides also the primitive panic, which halt the normal
control flow when typically an unexpected condition occurs. In
conjunction, the recover primitive can be employed within
deferred functions to intercept the panic, check and handle the
exceptional state, and subsequently restore normal execution.
However, such checking are optional: no compile-time check
is performed on the control flow of the function, and the choice
of whether to handle the error or not is left to the developer.

Blockchains are systems where correctness, reliability, and
security are crucial. Several blockchain frameworks rely on the
Go programming language, even though it was not specifically
designed for blockchain purposes [43]]. This makes it essential

Luca Negrini
Ca’Foscari University of Venice
Venice, Italy
luca.negrini @unive.it
0000-0001-9930-8854

to adopt automatic verification techniques, such as static
analysis, to detect potential issues during the early stages
of development. In this paper, we focus on the detection
of error handling issues in blockchain software written in
Go, as (i) functions interacting with the blockchain often
return an error value that must be taken into account when
developing smart contracts, and (ii) both Go and blockchain
software have guidelines on how to handle errors, which must
be enforced to avoid critical issues. This paper makes the
following contributions:

« the identification of critical vulnerabilities due to error
handling issues in the blockchain software written in Go;

« the design and implementation of a static analysis tailored
to detecting error handling issues in Go smart contracts;

o the design and implementation of a static analysis to
detect panic executions within critical components, also
considering defer-and-recover mechanisms, in blockchain
software written in Go;

o an experimental evaluation on Hyperledger Fabric (HF)
smart contracts and Cosmos’s applications to benchmark
the analysis and to understand the impact of error han-
dling issues on existing code.

The analysis has been implemented by extending GoLiSA,
a semantic-based static analyzer for Go programs, based on the
library LiSA [13], [41], [42] , supporting also the verification
of blockchain software [44)—[47], [49]].

Paper Structure: Section [lI] investigates issues related to
error handling in blockchain software written in Go. Section [[TI|
deals with the design and implementation details for the
detection of error handling issues. Section proposes an
experimental evaluation of the detection of errors handling
issues in existing blockchain software written in Go. Section[V]
discusses related work. Section |VI| concludes the paper.

II. ERRORS HANDLING ISSUES IN GO BLOCKCHAINS

In blockchain, error handling issues are not simply minor
problems or code smells to be fixed. They may give rise to
exploitable vulnerabilities that lead to critical consequences:

o State inconsistencies and data corruption: Blockchain
can store inconsistent ledger state data, when errors of
write/commit operations in blockchain are not properly

checked. Over time, this can result in unexpected behav-
iors, where malicious users can exploit them to gain an
unfair advantage and performs attacks. For instance, if an
error is not checked during a token exchange, the outcome
could be a double-spending attack [6].

o Consensus disruption: Improper and missing error han-
dling during the consensus phase (e.g., block valida-
tion, transaction verification and execution) can cause
blockchain peers to diverge in the result, leading to
a lack of majority and other non-trivial consequences
(e.g., forks and liveness failures). Furthermore, malicious
actors could exploit such weaknesses by sending ad-hoc
transactions to trigger unhandled errors and then force
honest peers to be out of sync, or be subject to penalties
from the consensus algorithm.

e Smart contract misbehavior: Correct error management
within smart contracts is of fundamental importance. In-
deed, if not handled properly, it may have several conse-
quences ranging from lost funds, locked contracts, unmet
preconditions or security vulnerabilities (e.g., failed ex-
ternal calls, unexpected reentrancy, numerical overflows)
to disrupt the expected application/business logic of the
contract, causing it to behave in ways that contradict
intended contract purpose [58]].

e Reduced auditability and incident response: If errors are
not properly handled, logs may fail to capture critical
events and relevant information. This not only affects the
search for the causes of failures, but also has security
implications because it does not allow forensic analysis
after an attack, leaving systems more vulnerable to re-
peated exploitation.

In Go, the philosophy of error handling is to encourage
explicit and consistent checks, in favor of clarity over abstrac-
tion, and control over convenience. Unlike other programming
languages that rely on exceptions and intricate try-catch con-
structs, errors in Go are values [S1]]. This design allows errors
to be explicitly inspected and handled, placing the responsi-
bility for error management on the developers. Furthermore,
in situations where an error is deemed irremediable such that
program execution cannot reasonably continue, Go provides
the built-in panic function [[18], that triggers a run-time
error that causes the halting of the program execution, unless
explicitly recovered with a defer-and-recover mechanism [15]].

However, as reported in the official Go Developer Survey
2024 H1 [17], error handling is the biggest challenge faced by
Go developers, due to tedious and repetitive implementation
of error checks, especially when deeply-nested structures are
involved. Not surprisingly, missing or improper error handling
are also common software vulnerabilities, frequently high-
lighted in leading security projects and standards (see, for
instance, like OWASP [11]], [50] and CWE [34]-[38]).

In Go, the verbosity required for explicit error handling
not only increases cognitive overhead but also makes the
code more error-prone. As an example, consider the code in
Figure [T} which reports the typical Go error handling pattern.
Function calls can return two values: the “normal” output,

N

data, err := ioutil.ReadFile("file.txt")
if err != nil {
panic("Error opening file!")

}

Fig. 1. Example of error handling in Go.

func (s *SmartContract) incorrectReadWrite (stub

shim.ChaincodeStubInterface) peer.Response {

value, _ = stub.GetState("Alice")
stub.PutState ("Bob", wvalue)
return shim.Success ([]byte ("OK"))

}

Fig. 2. Unhandled errors in Hyperledger Fabric.

which is only valid if no error happened, and a possibly-nil
error. The burden of ensuring that no error happens and that the
normal output is valid is left to the developer, who must check
the nullity of the error value and react accordingly. This how-
ever introduces new paths in the control-flow, which are often
very similar and verbose. Developers may thus be inclined to
deprioritize or altogether skip proper error handling in order
to focus on core functionality, which further exacerbates the
risk of undetected failures and unstable software behavior. Go
is adopted by several popular blockchain frameworks such
as Hyperledger Fabric [24]], Ethereum (e.g. the most popular
execution client Geth — Go-Ethereum — [3]] and consensus
client Prysm [29]), and Tendermint Core [64], including its
derivatives (e.g. CometBFT |8, Ignite [25]) and frameworks
(e.g. Cosmos SDK [63])).

Ensuring errors are correctly handled is thus pivotal. In the
following, we partition error handling errors in two families.

A. Silent Running Despite Incorrect State or Data

As Go requires developers to explicitly handle errors, these
do not automatically block or stop program execution. If
an error is ignored, the program continues running silently,
as if nothing went wrong, possibly with incorrect state or
data. To gain a deeper understanding of the implications of
silent running issue within blockchain systems, we examine
a representative example of HF smart contracts. In HF, smart
contracts can be developed without any restriction, fully using
the features of Go (including standard APIs and third-party
libraries) [43]. While this provides developers with a high
degree of freedom, it also requires them to explicitly manage
ledger interactions, such as invoking the functions GetState
and Put Stat for reading from and writing to the ledger
world state, respectively. However, these operations can return
errors and fail to perform, leading to unexpected behaviors.
Figure [2] illustrates a code snippet with a possible issue sce-
nario. At line 2, GetState reads the value of "Alice" from
the ledger world state and stores it into variable value, but

'Documentation of GetState available https://pkg.go.dev/github.com/
hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetState.

“Documentation of Put State available https://pkg.go.dev/github.com/
hyperledger/fabric-chaincode- go/shim#ChaincodeStub.PutState.

https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetState
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.GetState
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.PutState
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim#ChaincodeStub.PutState

(s *SmartContract) correctReadWrite (stub shim.
ChaincodeStubInterface) peer.Response {
value, err := stub.GetState("Alice")
if err != nil {
return shim.Error (fmt.Sprintf ("Failed to read
state for Alice: %s", err.Error()))

func

}

if value == nil {
return shim.Error ("No value found for Alice")

}

err = stub.PutState ("Bob", wvalue)
if err != nil {
return shim.Error (fmt.Sprintf ("Failed to write
state for Bob: %s", err.Error()))

}

return shim.Success ([]byte ("OK"))
Fig. 3. Possible solutions to the error handling issues of Figure 2}

discards any error thanks to the blank identifier _ This can
lead to unintended behavior when the key "Alice" is missing
or an internal error occurs during the read operation. In such
cases, variable value may be nil or contain an unexpected
default value. However, since there is no check over errors, the
contract is not halted: the execution continues, potentially with
incorrect or unexpected values. At line 3, PutState writes
this potentially invalid value to "Bob". The silent failure of
GetState might corrupt the ledger state by overwriting valid
data with an empty or incorrect value. Furthermore, PutState
might also fail to perform and return an error, but its value is
not collected in any variable: it is thus not possible to ensure
that the operation actually took place. Finally, at line 4, the
function always returns a successful transaction response shim
.Success ([]byte ("OK")) to the user client after the code
execution. This masks failures, making it difficult to detect
and recover from issues after deployment. Figure [3] provides a
possible fix for the code snippet of Figure[2] Specifically, error
values returned by GetState and PutState are collected in
the err variable (lines 2 and 11), which is later checked for
non-nullness (lines 3 and 12). If it is indeed non-nil, the
execution terminates with an error (lines 4 and 13). Moreover,
the non-erroneous value produced by GetState is checked
for nullness (line 7), and if it is nil, the execution is halted
with an error (line 8). Finally, the function returns a success
response only if all operations are successful (line 16). Note
that silently ignoring errors and continuing the execution with
incorrect state or data may also affect critical components in
Ethereum, Tendermint Core, and its derivatives, as real-world
examples demonstrate [[19]-[21]].

B. Unexpected Blockchain Application Crashes
Go developers should be familiar with the proverb:
“Don’t panic.” — [|16|], [52)]

It is a general guideline for writing robust software, that sug-
gests avoiding the use of panic or using it only as a last resort

3Documentation of blank identifier available https://go.dev/ref/spec#Blank_
identifier.

1

2
3

func BeginBlocker (ctx sdk.Context, k keeper.Keeper)

panic("Oh, dear. There is a reason to panic."

}

Fig. 4. Panic crash in Cosmos SDK.

in the event of fatal and irremediable errors. Furthermore,
this guideline becomes a fundamental mandate in blockchain
systems, where stability, reliability and security are essential.
In Go smart contracts, panic is typically managed and does
not affect other components of the node. This is acceptable
for smart contracts since most underlying blockchains revert
all state changes when execution fails [26]. For example, in
HF, a panic in a smart contract execution will lead to halt
and cause the transaction to be invalidated, but it will not
compromise the overall stability of the system. It is however
generally preferable to properly loéﬂ the issue and return
an appropriate error response, ensuring better debuggability
and more graceful error handling. However, according to
several security guidelines provided by pratictioners and se-
curity assessments companies (e.g. [[1], [4], [26], [27], [30],
[53], [56]), the instruction panic can lead to very harmful
consequences when incorrectly used for the implementation
of the blockchain node and its application logic, such as for
blockchain implementations like Tendermint Core, Ethereum
and their derivatives. Furthermore, the official guidelines state
that panics should not be allowed to propagate beyond the
package boundary [23].

To gain a clearer understanding of the consequences of panic
execution at the application layer of a blockchain node, we
examine a representative application module built with the
Cosmos SDK and designed to run on Tendermint Core and
derivatives. Figure [proposes a code snippet with a possible
issue scenario, where a panic is called at line 2 within
the method BeginBlocker. As reported in the Cosmos’s
documentation:

“BeginBlocker and EndBlocker are a way for
module developers to add automatic execution of
logic to their module. This is a powerful tool that
should be used carefully, as complex automatic
Sfunctions can slow down or even halt the chain.”
— [57]

For this reason, we considered these methods as critical
components. Furthermore, in the example, panic is not re-
covered by any defer-and-recover mechanism [15]: it will
thus lead to the crash of the entire application layer of
the blockchain node, causing a denial-of-service (DoS). In
addition, according to [56], a panic that depends on data
manipulated by the user (e.g., the payload of a transac-
tion) can create other serious vulnerabilities. For instance,
an attacker might crash only a subset of nodes, reducing
the number of active participants to perform other kind of

4Logging functions that may result in a panic execution such as 10g.
Panic should be avoided.

https://go.dev/ref/spec#Blank_identifier
https://go.dev/ref/spec#Blank_identifier

13
14
15

func panicRecovery (ctx sdk.Context) {
detect if panic occurs or
recover ()

not
r =

if r !'= nil {
recovery c cti
ctx.Logger () .Error ("Panic Recovered", "error",
r)
}
}

func BeginBlocker (ctx sdk.Context,
{
defer panicRecovery (ctx)
panic("Oh, dear. There is a reason to panic.")

}

k keeper.Keeper)

Fig. 5. Recovery of panic crash in Cosmos SDK.

attacks (e.g., double spending, etc.) or to achieve the majority
consensus to approve malicious governance proposals and
manage the entire blockchain network. An attacker could also
target individual validators, causing economic losses through
stake slashing as well as reputational harm due to continuous
attacks and long downtime. Figure [5] provides a possible fix
for the code snippet of Figure 4] At line 13, the function
panicRecovery is deferred, i.e., it is executed at the end of
the BeginBlocker function, after the panic at line 14. The
function panicRecovery contains a recover () call at line
3, that it is used to detect possible panics. If one is detected,
it is handled by performing custom recovery actions at lines 6
and 7, and the error is logged at line 8 instead of leading
to a blockchain node crash. Note that unexpected panics
may also affect critical components in Ethereum, Hyperledger
Fabric (framework implementation), as real-world examples
demonstrate [10f], [40], [55], [59], [66].

III. STATIC DETECTION OF ERROR HANDLING ISSUES

Static analysis allows one to verify programs without
running them [54]]. A key advantage of static analysis in
blockchain development is its ability to detect critical issues
before the code is deployed to a distributed and decentralized
network, and before it becomes immutable and changes are
costly or impossible. Furthermore, it can be automated and
integrated into the development workflow, making it a funda-
mental step to proactively detect and address issues, such as
those outlined in Section

A. Detection of Unhandled Errors

The first step in detecting unhandled errors is to identify
blockchain functions that return critical errors. Typically, these
functions are known a priori (e.g. PutState, GetState
mentioned in SectionI-A) and can be easily detected (e.g.,
by matching the signature of the function or through annota-
tions [[12]): it is thus possible to traverse the program structure
in search for calls to critical functions, and issue warnings if:

1) the returned values are not assigned to variables;

2) the returned error value is discarded;

3) the returned error value is not checked for nullness.

In the first two cases, the check is merely syntactic. If
the function call is not inside on the right-hand side of an
assignment, the analysis issues an unassigned error warning.
If it is, but a blank identifier is used to ignore the error
value, then a discarded error warning is built. Instead, the
third case requires reasoning about the execution flow. To
determine whether an error variable is properly checked, it is
necessary to reason about both the program’s semantics and
its control flow, as this involves an understanding of how the
value is propagated and used. Hence, by traversing the code
starting from the assignment of an error variable, a warning
for an unchecked error is triggered if no conditional checks
are found, or if the error variable is overwritten before it is
used. Note that, according to Go best practices, error checking
should be performed within the function itself, so we limited
our analysis to intra-procedural reasoning. However, if desired,
it can be extended to an inter-procedural level by considering
the information of a sound call graph during the analysis.

B. Detection of panic Execution within Critical Components

For detecting panic executions within critical components
through static analysis, we leverage a program representation
based on a set of CFGs and the computation of a sound
call graph. The first step is to detect panic statements, and
it can be easily done by traversing the program structure
and holding all occurrences of function calls with the panic
function signature. Next, it is necessary to determine whether
a critical component can execute the panic. This involves
analyzing the signature of the function in which the panic is
contained, and checking if it matches a critical component
(e.g., BeginBlocker mentioned in Section [-A). If the
function does not belong to a critical component, the call
graph must be traversed backwards, starting from the CFG
containing the panic and inspecting its callers transitively.
During this phase, the analysis also keeps track of defer-and-
recovery mechanisms, considering also possible ones (e.g.,
defers with unknown targets not part of the codebase under
analysis). Once the execution paths leading to critical panic
scenarios are identified, the analysis can classify different
behavioral patterns:

1) if none of the paths that reach the panic invoke any
(even potential) defer-and-recover mechanisms, the anal-
ysis reports a fatal panic warning, indicating that any
panic will result in a program halt;

2) if at least one path includes a (possible) defer-and-
recover mechanism and another does not, the analysis
issues a partial panic recovery warning, as the program
might recover depending on the execution path;

3) if all panic paths are guarded by defer-and-recover
mechanisms, but some of them are possible, a possible
panic recovery warning is raised to indicate that the
recovery is uncertain and requires further inspection.

IV. EXPERIMENTAL EVALUATION

This section presents the results of the application of
GoLiSA’s analyses for the detection of issues reported in

Section |II] on a benchmark of existing HF smart contracts
and Cosmos’s applications written in Go. First, the analysis is
evaluated from a quantitative point of view, proposing statistics
on performances and classifying the warnings triggered by
the analysis on the benchmark. Subsequently, the quality of
the analysis results is evaluated on a representative subset
of the benchmark. Experiments have been performed on a
machine with a 16-Core 3.50 GHz CPU, 128 GB of RAM, 20
TB SSD, running Ubuntu 22.04.3 LTS, Open JDK version
21, and with 8 GBs of RAM allocated to the JVM. The
version of GoLiSA used for the evaluation is available at:
https://github.com/lisa-analyzer/go-lisa/tree/brains2025

The experimental evaluation can be reproduced using the
following artifact: https://doi.org/10.5281/zenodo.17220346

A. Experimental Datasets

For our experiments, we considered the dataset presented
in [45]], [47], that we refer to as HF, consisting of 651 files
(~ 16 739 Lines of Code) retrieved from public GitHub repos-
itories by querying the keyword “chaincode” (i.e., HF smart
contracts). To also include Cosmos SDK applications, we ex-
tended the dataset by adding files retrieved from public GitHub
repositories that match the signature of critical Cosmos SDK
methods (i.e., querying the keywords “BeginBlocker (ctx

sdk.Context, k keeper.Keeper) ’E] and “EndBlocker
(ctx context. Context)’ﬂ). The results were filtered to
exclude duplicate files (detected through SHA256 checksum
equality) and selecting Go files with those methods declara-
tions. No additional filters were applied based on this result:
we considered all files found in the crawled repositories to
avoid bias in the analysis outcome. This led to the addition
of 907 files (~135289 Lines of Code), which we refer to as
Cs. In total, HF and Cs are composed by 1558 Go files. Note
that, as Ethereum and Hyperledger Fabric framework/protocol
implementations leave close to no space for customization by
the developer, we did not consider them in our experiments.

B. Quantitative Evaluation

Using GoLiSA, we ran the Unhandled Errors analysis
on HF and the Panic Executions on CS. Out of the 1558
total Go files, GOLiISA successfully analyzed 1419 programs
(~91,1%), with failures due to language constructs not sup-
ported by the analyzer (e.g., some corner cases related to
structure with inline fields initialization and others related
to anonymous functions) and analysis timeouts (set to 10
minutes). The total execution time for the analyses (single
thread) is ~1 hour, with an average execution time of ~2.35
seconds per program.

Table |I| shows the results of analyses implemented in
GoLiSA over the experimental dataset. We denote by #TP,
#FP, #FN the number of true positives, false positives, and
false negatives among the raised warnings, respectively. Their

Shttps://github.com/search?q=language%3 AGo+Begin-Blocker%28ctx+
sdk.Context%2C+k+keeper.Keeper%29&type=code. (Accessed: 27/05/2025)

Chttps://github.com/search?q=language %3 AGo+End-Blocker%28ctx+
context.Context%29&type=code, (Accessed: 27/05/2025)

classification was carried out through an in-depth manual in-
vestigation performed on all the programs in the experimental
dataset.

TABLE 1
ANALYSIS RESULTS OF GOLISA.

[Analysis | Warning [#TP | #FP [#FN |
Discarded Error 230 0 0
Unhandled Errors | Unassigned Error 410 0 0
Unchecked Error 33 5 0
Fatal Panic 165 2 0
Panic Executions Partial Panic Recovery 0 0 0
Possible Panic Recovery 0 0 0

GoLiSA detected 230 true discarded errors on 95 files from
HF, 410 true unassigned errors on 189 files from HF, and 33
true unchecked errors on 22 files from HF. Since the check
for discarded and unassigned errors is merely syntactic, the
analysis does not produce false positives for these warnings.
Instead, the 5 false positives on unchecked errors are due
to the choice of an intra-procedural analysis. As stated in
Section Go best practice ask to check error immediately
after their collection; then, if the program follow the practice,
it is sufficient to carry out the intra-procedural analysis, but in
those false positives, the error values are returned without any
check and then they are checked in callers. The analysis can
be easily extended to be inter-procedural, as it happens for the
panic analysis, to avoid false positive warnings and provide a
more precise analysis.

As for panic executions, GOLISA detected 165 true fatal
panic warnings on 102 files from Cs, 0 partial panic recovery
and possible panic recovery warnings. In this case, the 2 false
positives are due to legitimate panics that drop and avoid
the execution of unupdated application versions, a common
practice also widespread for Ethereum clients [59].

C. Qualitative Evaluation

In this section, we present a qualitative evaluation of the
analysis results, discussing a program from HF and one from
Cs that showcase the reasoning of our analyses.

1) Unexpected Blockchain State on FabCar: Figure [6] pro-
poses a code snippet from fabcar.go, originating in a forked
repository of Hyperledger Fabric Sample The FabCar ap-
plication is a beginner-friendly example demonstrating how
to build a basic blockchain application using the Fabric
framework. It implements the logic of a car factory and
serves as a tutorial for understanding key HF concepts such as
smart contracts, peers, ordering service, and how applications
interact with the ledger. However, FabCar lacked of several
proper error handling when reading from and writing to the
blockchain world state in official versions 1.2 through 1.4.
This issue was addressed and resolved starting with release
v2.2. While FabCar is a helpful learning resource, bugs or
mismatches in an official example can lead to critical issues

"https://github.com/hyperledger/fabric-samples/blob/release- 1.2/chaincode/
fabcar/go/fabcar.go

https://github.com/lisa-analyzer/go-lisa/tree/brains2025
https://doi.org/10.5281/zenodo.17220346
https://github.com/search?q=language%3AGo+Begin-Blocker%28ctx+sdk.Context%2C+k+keeper.Keeper%29&type=code
https://github.com/search?q=language%3AGo+Begin-Blocker%28ctx+sdk.Context%2C+k+keeper.Keeper%29&type=code
https://github.com/search?q=language%3AGo+End-Blocker%28ctx+context.Context%29&type=code
https://github.com/search?q=language%3AGo+End-Blocker%28ctx+context.Context%29&type=code
https://github.com/hyperledger/fabric-samples/blob/release-1.2/chaincode/fabcar/go/fabcar.go
https://github.com/hyperledger/fabric-samples/blob/release-1.2/chaincode/fabcar/go/fabcar.go

e R T

[...
func (s *SmartContract) changeCarOwner (APIstub shim
.ChaincodeStubInterface, args []string) sc.
Response {

carAsBytes, _ APIstub.GetState (args[0])

car.Owner arg[l]

[...
APIstub.PutState(args[0], carAsBytes)
return shim.Success (nil)

[...

Fig. 6. The function changeCarOwner of fabcar.go

because typically used as a base without proper understanding .

or adaptation by practitioners.

Figure [6] presents a buggy portion of the FabCar contract.
This code is shown for the sake of readability and compact-
ness. Nevertheless, the full contract contains additional error

14
15
16

18
19
20
21

23
24
25

handling issues, including problems in the car creation logic

and other feature. Specifically, in the proposed scenario, the
code allows to change the ownership of a car. However, the
possible error produced by Getstate is discarded: invalid
data could be retrieved and may corrupt the blockchain state
through Putstate. Furthermore, the possible error returned
by PutState itself is discareded: the write operation could
silently fail without finalizing the change in ownership, while
still returning a success transaction response.

Analyzing the code snippet of Figure [fl GOLiSA detects
the execution of read and write operations at lines 4 and 8§,
respectively. Hence, in the first case, the analysis checks the
assignment after the Get State and detects the blank identifier
that discard the error value, issuing a discarded error warning
at line 4. Then, the analysis checks the call to PutState and
detects that the returned error value is not stored in a variable,
producing a unassigned error warning at line 8.

2) Panic on Althea Cosmos Gravity Bridge: Figure
proposes the code of abci.go from Althea Cosmos Gravity
Bridge [2]], affected by a documented panic issue in the official
Althea Cosmos Gravity Bridge’s repository [28§]], leading to
possible blockchain node crashes during slashing operations.

Analyzing abci.go, GOLIiSA finds the panic execution at
line 19. Then, it checks if the panic (err) statement is
located in a critical component. Being vValsetSlashing
not critical, GOLiSA performs a backward inspection of the
function’s callers. It first considers function slashing, that
calls valsetSlashing at line 8. It then follows the call
chain transitively, reaching the call to slashing at line 4
of EndBlocker. Here, GOLiSA infers that EndBlocker is a
critical component, thus determining that panic (err) is itself
critical. Since the only defer encountered during traversal
(line 14) does not call recover (), no defer-and-recover can
happen. Thus, a warning is generated at line 19, indicating a
fatal panic that can lead to a crash of the blockchain node.

func EndBlocker (ctx sdk.Context, k keeper.Keeper) {

slashing (ctx, k)
}

func slashing(ctx sdk.Context, k keeper.Keeper) {
Valéetsiashing(ctx, k, params)
}

func ValsetSlashing(ctx sdk.Context,
Keeper, params types.Params) {

k keeper.

unbondingValIterator :
ValidatorQueuelIterator (ctx,
blockHeight)

defer unbondingVallterator.Close ()

k.StakingKeeper.
blockTime,

forr_, valAddr := range unbondingValidators.
Addresses {
addr, err := sdk.ValAddressFromBech32 (valAddr)

if err != nil {
panic (err)
}
-1

Fig. 7. The function EndBlocker of abci.go

V. RELATED WORK

The design and implementation of verification tools is a
non-trivial task [48]]. For this reason, the Go language provides
the golang.org/x/tools moduleﬂ containing various
basic APIs for static analysis of Go programs (e.g., code
parser, abstract syntax trees builder). This module gave birth
to several lintenﬂ such as GoSec [39|] and Staticcheck [22]
that provide mainly syntactic intra-procedural checks for the
detection of generic issues and code smells, including simple
error handling issues. However, these tools are generally not
designed for blockchain frameworks and therefore require
extensions to process them. For example, GoSec has been
extended to support the Cosmos SDK by incorporating cus-
tom rules [5]. These SDK-specific rules help detect non-
deterministic behaviours and the use of unsafe or insecure
packages, which are critical concerns in blockchain-based
applications where deterministic execution is essential for
consensus. Similarly, Revive"CC [7] is a specialized version
of the static analyzer Revive [14], tailored specifically for
analyzing HF smart contracts. Other tools are based on
golang.org/x/tools module. Chaincode Analyzer [|68]],
by Fujitsu from Hyperledger Labs, implements checks for
HF smart contracts. Lv et al. [33]] and Yamashita et al. [[67]
propose similar tools inspired by Chaincode Analyzer and
Revive"CC, but they cover more issues and more accurately.
However, they are not publicly available. Compared with our
approach, the main limitation of golang.org/x/tools
(and of tools based on it) is that it does not support native
components of formal methods (e.g., fixpoint algorithms, ab-

8Documentation available at |https://cs.opensource.google/go/x/tools
9https://en.wikipedia.org/wiki/Lint_(software)

https://cs.opensource.google/go/x/tools
https://en.wikipedia.org/wiki/Lint_(software)

stract interpreters, satisfiability modulo theories (SMT) solver
interfaces, etc.), making these tools inaccurate and unable
to provide formal guarantees on their findings. Instead, the
main technical differences are that these tools typically work
on the abstract syntax tree level (AST), without computing
the CFG, and also often using static single-assignment form
(SSA) as intermediate representation. The available checks are
mainly related to discarded and unassigned errors, and to panic
detection without any identification of critical components and
defer-and-recover mechanisms.

To the best of our knowledge, few tools employ formal
methods on Go, and are mostly specialized on concurrency
and parallelization issues. For instance, Veileborg et al. [|65]
describe a local abstract interpretation approach for detecting
blocking errors on software with channel-based concurrency
and multi-threading environments. Liu et al. [31] with Go-
Catch apply static analysis and SMT solvers during the com-
putations. Instead, GFuzz [31] proposes a dynamic fuzzing
approach. However, concurrency and parallelization are often
avoided in blockchain software as they can also give rise to
non-determinism problems and consequently consensus prob-
lems [47]], [49]. Another notable tool is CodeQL, a semantic
code analysis engine developed by GitHub. A dedicated query
pack named cosmos-sdk-codegl [62] has been created for
Cosmos-based projects. This pack includes seven targeted
queries that identify common security vulnerabilities such
as improper access control, unsafe data handling, and logic
errors within Cosmos SDK applications. Another pack for
CodeQL is also provided by Surmont et al. [61]. It provides
queries for several common Cosmos SDK issues that are
detected by investigating the AST and also a data flow graph
(DFG). However, regarding error issues, the queries@] currently
support only the detection of panic executions without any
additional checks for defer-and-recover mechanisms. To the
best of our knowledge, GOLISA is the first tool considering
also defer-and-recover mechanisms during the analysis of
blockchain software.

VI. CONCLUSION

In this study, we examined the pitfalls of error handling
issues in Go related to blockchain context. Due to Go’s
explicit error handling style, developers often inadvertently
ignore or mishandle errors, leading to bugs, data and state
inconsistencies. Furthermore, we explore the issues related to
panic executions within critical blockchain components that
can compromise the reliability of the systems.

Our findings and proposed analyses highlight the impor-
tance of a consistent and proactive approach, such as static
analysis, to detect these issues before code deployment and
before that code becomes difficult to patch due to the dis-
tributed and decentralized nature of blockchain.

Future work may involve enhancing the proposed detection
with deeper semantic understanding to verify more complex

10https://github.com/JasperSurmont/cosmos-sdk-codegl/blob/main/queries/
beginendblockPanic.ql

error handling issues, such as the detection of implicit panic
executions that require advanced analysis. For instance, LISA
already implements numerical abstractions like Intervals [9]]
and Pentagons [32]] that may be applied for the detection of
division by zero and index out of bounds accesses, as well as
the information flow analysis [46], [47] for the detection of
panic statements dependent on external inputs (e.g., transaction
payload). Finally, other analyses can be considered for imple-
mentation, such as those related to nullness verification [60)].

ACKNOWLEDGEMENT

Work partially supported by SERICS (PE00000014 -
CUP H73C2200089001) and iNEST (ECS00000043 — CUP
H43C22000540006) projects funded by PNRR NextGenera-
tion EU.

REFERENCES

[1] Akhtariev, R., Yukseloglu, A.: The Cosmos Security Handbook (2024),
https://www.faulttolerant.xyz/2024-01- 16-cosmos-security- 1, Accessed:
06/2025

[2] Althea-net: Althea Cosmos Gravity Bridge - GitHub Repository (2024),
https://github.com/althea-net/cosmos- gravity-bridge, Accessed: 06/2025

[3] go-ethereum Authors: go-ethereum (2025), https://geth.ethereum.org/,
Accessed: 05/2025

[4] of Bits, T.: Building Secure Contracts - ABCI methods panic (2023),
https://secure-contracts.com/not- so- smart-contracts/cosmos/abci_panic/
index.html, Accessed: 05/2025

[5] Buchman, E.: gosec - Golang Security Checker for the CosmosSDK
(2022), https://github.com/cosmos/gosec, Accessed 06/2025

[6] Chohan, U.W.: The double spending problem and
cryptocurrencies. Available at SSRN 3090174 (2021).
https://doi.org/10.2139/ssrn.3090174

[71 Chokkapu, S.: Revivecc (2021),
revive-cc, Accessed 02/2025

[8] CometBFT: CometBFT Documentation (2025), https://docs.cometbft.
com/v1.0/, Accessed: 05/2025

[9] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of

fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages. p. 238-252. POPL 77,

Association for Computing Machinery, New York, NY, USA (1977).

https://doi.org/10.1145/512950.512973, |https://do1.org/10.1145/512950.

512973

Enyeart, D.: Hyperledger Fabric - Issue #5169: Panic in gossip/gos-

sip/algo (2025), https://github.com/hyperledger/fabric/issues/5169, Ac-

cessed: 05/2025

Ferragamo, J., et al.: Improper Error Handling (2025), OWASP Web-

site. |https://owasp.org/www-community/Improper_Error_Handling, Ac-

cessed 05/2025

Ferrara, P., Negrini, L.: SARL: OO Framework Specification for Static

Analysis. In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schram-

mel, P. (eds.) Software Verification. pp. 3-20. Springer International

Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-63618-0_1

Ferrara, P, Negrini, L., Arceri, V., Cortesi, A.: Static analysis for

dummies: Experiencing lisa. In: Proceedings of the 10th ACM SIG-

PLAN International Workshop on the State Of the Art in Program

Analysis. p. 1-6. SOAP 2021, Association for Computing Machinery,

New York, NY, USA (2021). https://doi.org/10.1145/3460946.3464316,

https://doi.org/10.1145/3460946.3464316

Gechev, M.: Revive (2021), https://github.com/mgechev/revive, Ac-

cessed 02/2025

Gerrand, A.: Defer, Panic, and Recover (2010), The Go Blog. https:

//go.dev/blog/defer-panic-and-recover, Accessed 05/2025

Google: Go Wiki: Go Code Review Comments - Don’t Panic, https:

//go.dev/wiki/CodeReviewComments#dont-panic, Accessed: 05/2025

Google: Go developer survey 2024 hl results (2021), The Go Blog.

https://go.dev/blog/survey2024-h1-results, Accessed 05/2025

Google: Effective Go - Panic (2025), https://go.dev/doc/effective_go#

panic, Accessed 05/2025

https://github.com/sivachokkapu/

[10]

[11]

[12]

[13]

[14]
[15]
(16]
[17]

[18]

https://github.com/JasperSurmont/cosmos-sdk-codeql/blob/main/queries/beginendblockPanic.ql
https://github.com/JasperSurmont/cosmos-sdk-codeql/blob/main/queries/beginendblockPanic.ql
https://www.faulttolerant.xyz/2024-01-16-cosmos-security-1
https://github.com/althea-net/cosmos-gravity-bridge
https://geth.ethereum.org/
https://secure-contracts.com/not-so-smart-contracts/cosmos/abci_panic/index.html
https://secure-contracts.com/not-so-smart-contracts/cosmos/abci_panic/index.html
https://github.com/cosmos/gosec
https://github.com/sivachokkapu/revive-cc
https://github.com/sivachokkapu/revive-cc
https://docs.cometbft.com/v1.0/
https://docs.cometbft.com/v1.0/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://github.com/hyperledger/fabric/issues/5169
https://owasp.org/www-community/Improper_Error_Handling
https://doi.org/10.1145/3460946.3464316
https://github.com/mgechev/revive
https://go.dev/blog/defer-panic-and-recover
https://go.dev/blog/defer-panic-and-recover
https://go.dev/wiki/CodeReviewComments#dont-panic
https://go.dev/wiki/CodeReviewComments#dont-panic
https://go.dev/blog/survey2024-h1-results
https://go.dev/doc/effective_go#panic
https://go.dev/doc/effective_go#panic

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

(39]
[40]

[41]

HelloBloc: Canine-chain - Issue #8: Need Error Handling for RNS‘s
SendCoinsFromAccountToModule Function (2025), https://github.com/
JackallLabs/canine-chain/issues/3, Accessed: 05/2025

HelloBloc: Ignite CLI - issue #2828: Ignite Tutorial on Bankkeeper Use
is Flawed (2025), https:/github.com/ignite/cli/issues/2828, Accessed:
05/2025

HelloBloc: Loan project - Issue #6: Need Error Handling for Send-
Coins Function, note=https://github.com/fadeev/loan/issues/6, accessed:
05/2025 (2025)

Honnef, D.: Staticcheck website, https://staticcheck.io/, Accessed:
09/2022

Hyperledger: General guidelines for error handling in
Hyperledger Fabric (2023), https://hyperledger-fabric.

readthedocs.io/en/release-2.5/error-handling.html#
general-guidelines-for-error-handling-in-hyperledger-fabric,
05/2025

Hyperledger: Hyperledger Fabric: A Blockchain Platform for the En-
terprise (2025), https://hyperledger-fabric.readthedocs.io/en/release-2.5/
#a-blockchain-platform-for-the-enterprise, Accessed: 05/2025

Ignite: Ignite Documentation (2025), https://docs.ignite.com/welcome,
Accessed: 05/2025

James, W.: Cosmos Security: An Otter’s Guide (2025), https://osec.io/!
blog/2025-06- 10-cosmos-security, Accessed: 06/2025

Jorgecastillot: Cosmos unmasked, a security guide to review
cosmos application (2024), https://medium.com/@jorgecastillot2017/

Accessed

Accessed: 06/2025

Kuprianov, A.: Endblocker panics may halt consensus engine #348
(2024), https://github.com/althea-net/cosmos-gravity-bridge/issues/348,
Accessed: 06/2025

Labs, O.: Prysm: An Ethereum Consensus Implementation Written in
Go (2025), https://geth.ethereum.org/, Accessed: 05/2025

Learn, G.: Cosmos Ecosystem Security Guide: Analyzing Security
Challenges in Different Components (2024), https://www.zellic.i0/blog/
exploring-cosmos-a-security-primer/, Accessed: 06/2025

Liu, Z., Xia, S., Liang, Y., Song, L., Hu, H.: Who goes first? de-
tecting go concurrency bugs via message reordering. In: Proceedings
of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. p. 888-902. AS-
PLOS ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3503222.3507753, https://doi.org/
10.1145/3503222.3507753

Logozzo, F., Fihndrich, M.: Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses. In: Proceedings
of the 2008 ACM Symposium on Applied Computing. p. 184-188.
SAC ’08, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1363686.1363736, https://doi.org/
10.1145/1363686.1363736

Lv, P, Wang, Y., Wang, Y., Zhou, Q.: Potential Risk Detection Sys-
tem of Hyperledger Fabric Smart Contract based on Static Analy-
sis. In: IEEE Symposium on Computers and Communications, ISCC
2021, Athens, Greece, September 5-8, 2021. pp. 1-7. IEEE (2021).
https://doi.org/10.1109/ISCC53001.2021.9631249

MITRE: CWE-248: Uncaught Exception (2025), https://cwe.mitre.org/
data/definitions/248.html, Accessed 05/2025

MITRE: CWE-252: Unchecked Return Value (2025), https://cwe.mitre.
org/data/definitions/252.html, Accessed 05/2025

MITRE: CWE-391: Unchecked Error Condition (2025), https://cwe.
mitre.org/data/definitions/391.html, Accessed 05/2025

MITRE: CWE-703: Improper Check or Handling of Exceptional Con-
ditions (2025), https://cwe.mitre.org/data/definitions/703.html, Accessed
05/2025

MITRE: CWE-755: Improper Handling of Exceptional Condi-
tions (2025), https://cwe.mitre.org/data/definitions/755.html, Accessed
05/2025

Murphy, G.: Secure go website, https://securego.io/, Accessed: 09/2022
Nagai, T.: Hyperledger Fabric - Issue #5198: Creating a channel with the
same name again causes orderer process to terminate abnormally (2025),
https://github.com/hyperledger/fabric/issues/5198, Accessed: 05/2025
Negrini, L., Arceri, V., Olivieri, L., Cortesi, A., Ferrara, P.: Teaching
through practice: Advanced static analysis with lisa. In: Sekerinski,
E., Ribeiro, L. (eds.) Formal Methods Teaching. pp. 43-57. Springer
Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-
71379-8_3

[42]

[43]

[44]

[45]

[46]

Negrini, L., Ferrara, P, Arceri, V., Cortesi, A.: LiSA: A Generic
Framework for Multilanguage Static Analysis, pp. 19-42. Springer
Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-
19-9601-6_2

Olivieri, L., Arceri, V., Chachar, B., Negrini, L., Tagliaferro, F., Spoto,
F., Ferrara, P., Cortesi, A.: General-purpose languages for blockchain
smart contracts development: A comprehensive study. IEEE Access 12,
166855-166869 (2024). https://doi.org/10.1109/ACCESS.2024.3495535
Olivieri, L., Negrini, L., Arceri, V., Chachar, B., Ferrara, P., Cortesi,
A.: Detection of phantom reads in hyperledger fabric. IEEE Access 12,
80687-80697 (2024). https://doi.org/10.1109/ACCESS.2024.3410019
Olivieri, L., Negrini, L., Arceri, V., Ferrara, P.,, Cortesi, A.: Detection
of read-write issues in hyperledger fabric smart contracts. In: Proceed-
ings of the 40th ACM/SIGAPP Symposium on Applied Computing.
p. 329-337. SAC ’25, Association for Computing Machinery, New
York, NY, USA (2025). https://doi.org/10.1145/3672608.3707721, https:
//doi.org/10.1145/3672608.3707721

Olivieri, L., Negrini, L., Arceri, V., Ferrara, P, Cortesi,
A., Spoto, F.: Static detection of untrusted cross-contract
invocations in go smart contracts. In: Proceedings of the 40th
ACM/SIGAPP Symposium on Applied Computing. p. 338-347.
SAC 25, Association for Computing Machinery, New York,
NY, USA (2025). https://doi.org/10.1145/3672608.3707728,
https://doi.org/10.1145/3672608.3707728

; : : o : [47]1_ Olivieri, L., Negrini, L., Arceri, V., Tagliaferro, F., Ferrara, P., Cortesi,
cosmos-unmasked- a-security- guide- to-review-cosmos-application-cfc9efbdd205, A., Spoto, F.: Information flow analysis for detecting non-determinism in

(48]

[49]

[50]

[51]
[52]
[53]
[54]

[55]

[56]

[57]

(58]

[59]

blockchain. In: Ali, K., Salvaneschi, G. (eds.) 37th European Conference
on Object-Oriented Programming (ECOOP 2023). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 263, pp. 1-25. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2023).
https://doi.org/10.4230/LIPIcs. ECOOP.2023.23, https://doi.org/10.4230/
LIPIcs.ECOOP.2023.23

Olivieri, L., Spoto, F.: Software verification challenges in the blockchain
ecosystem. International Journal on Software Tools for Technology
Transfer 26(4), 431-444 (2024). https://doi.org/10.1007/s10009-024-
00758-x

Olivieri, L., Tagliaferro, F., Arceri, V., Ruaro, M., Negrini, L.,
Cortesi, A., Ferrara, P., Spoto, F., Talin, E.: Ensuring determinism
in blockchain software with golisa: an industrial experience report.
In: Proceedings of the 11th ACM SIGPLAN International Work-
shop on the State Of the Art in Program Analysis. p. 23-29.
SOAP 2022, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3520313.3534658, |https://doi.org/
10.1145/3520313.3534658

OWASP: Error Handling Cheat Sheet (2025), OWASP Website.
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_
Sheet.html, Accessed 05/2025

Pike, R.: Errors are values (2015), The Go Blog. https://go.dev/blog/
errors-are-values, Accessed 05/2025

Proverbs, G.: Go Proverbs: Simple, Poetic, Pithy, https://go-proverbs.
github.io, Accessed: 09/2022

Rajvardhan: Exploring Cosmos: A Security Primer (2023), https://www.
zellic.io/blog/exploring-cosmos-a-security-primer/, Accessed: 06/2025
Rival, X., Yi, K.: Introduction to static analysis: an abstract interpretation
perspective. Mit Press (2020)

1j1493456442: Go-ethereum - Issue #30229: State corruption after
unexpected terminations during snap sync (2024), https://github.com/
ethereum/go-ethereum/issues/30229, Accessed: 05/2025

Saigle, J.: Don’t “Panic”: How Improper Error-Handling Can
Lead to Blockchain Hacks (2022), https://www.halborn.com/blog/post/!
dont-panic-how-1improper-error-handling-can-lead- to-blockchain-hacks)
Accessed: 05/2025

SDK, C.: Cosmos SDK Documentation - BeginBlocker and EndBlocker
(2025), https://docs.cosmos.network/v0.53/build/building-modules/
beginblock-endblock#beginblocker-and-endblocker- 1, Accessed:
05/2025

Shabna Madathil Thattantavida, S.K.: Ibm developer - learn best prac-
tices for debugging and error handling in an enterprise-grade blockchain
application (2023), https://developer.ibm.com/blogs/debugging-and-
error-handling-best-practices-in-a-blockchain-application (Accessed
01/2024)

Sikiric, D.M.: Go-ethereum - Issue #29425: Panic of geth (2024), https:
//github.com/ethereum/go-ethereum/issues/29425, Accessed: 05/2025

https://github.com/JackalLabs/canine-chain/issues/8
https://github.com/JackalLabs/canine-chain/issues/8
https://github.com/ignite/cli/issues/2828
https://github.com/fadeev/loan/issues/6
https://staticcheck.io/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/error-handling.html#general-guidelines-for-error-handling-in-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.5/error-handling.html#general-guidelines-for-error-handling-in-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.5/error-handling.html#general-guidelines-for-error-handling-in-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.5/#a-blockchain-platform-for-the-enterprise
https://hyperledger-fabric.readthedocs.io/en/release-2.5/#a-blockchain-platform-for-the-enterprise
https://docs.ignite.com/welcome
https://osec.io/blog/2025-06-10-cosmos-security
https://osec.io/blog/2025-06-10-cosmos-security
https://medium.com/@jorgecastillot2017/cosmos-unmasked-a-security-guide-to-review-cosmos-application-cfc9efbdd205
https://medium.com/@jorgecastillot2017/cosmos-unmasked-a-security-guide-to-review-cosmos-application-cfc9efbdd205
https://github.com/althea-net/cosmos-gravity-bridge/issues/348
https://geth.ethereum.org/
https://www.zellic.io/blog/exploring-cosmos-a-security-primer/
https://www.zellic.io/blog/exploring-cosmos-a-security-primer/
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/3503222.3507753
https://doi.org/10.1145/1363686.1363736
https://doi.org/10.1145/1363686.1363736
https://cwe.mitre.org/data/definitions/248.html
https://cwe.mitre.org/data/definitions/248.html
https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/703.html
https://cwe.mitre.org/data/definitions/755.html
https://securego.io/
https://github.com/hyperledger/fabric/issues/5198
https://doi.org/10.1145/3672608.3707721
https://doi.org/10.1145/3672608.3707721
https://doi.org/10.1145/3672608.3707728
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.1145/3520313.3534658
https://doi.org/10.1145/3520313.3534658
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://go.dev/blog/errors-are-values
https://go.dev/blog/errors-are-values
https://go-proverbs.github.io
https://go-proverbs.github.io
https://www.zellic.io/blog/exploring-cosmos-a-security-primer/
https://www.zellic.io/blog/exploring-cosmos-a-security-primer/
https://github.com/ethereum/go-ethereum/issues/30229
https://github.com/ethereum/go-ethereum/issues/30229
https://www.halborn.com/blog/post/dont-panic-how-improper-error-handling-can-lead-to-blockchain-hacks
https://www.halborn.com/blog/post/dont-panic-how-improper-error-handling-can-lead-to-blockchain-hacks
https://docs.cosmos.network/v0.53/build/building-modules/beginblock-endblock#beginblocker-and-endblocker-1
https://docs.cosmos.network/v0.53/build/building-modules/beginblock-endblock#beginblocker-and-endblocker-1
https://github.com/ethereum/go-ethereum/issues/29425
https://github.com/ethereum/go-ethereum/issues/29425

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

Spoto, F.: Precise null-pointer analysis. Software & Systems Modeling
10(2), 219-252 (2011), https://doi.org/10.1007/s10270-009-0132-5
Surmont, J., Wang, W., Cutsem, T.V.: Static application secu-
rity testing of consensus-critical code in the cosmos network.
In: 2023 5th Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS). pp. 1-8 (2023).
https://doi.org/10.1109/BRAINS59668.2023.10316912

Tauber, T.: cosmos-sdk-codeql - A query suite for common bug pat-
terns in Cosmos SDK-based applications. (2023), https://github.com/
crypto-com/cosmos-sdk-codeql, Accessed 06/2025

Teams, I.C.: Cosmos SDK Documentation (2025), https://docs.cosmos.
network/v0.53/learn/intro/overview, Accessed: 05/2025

Tendermint: Tendermint Core Documentation (2025), https://docs.
tendermint.com/v0.35/, Accessed: 05/2025

Veileborg, O.H., Saioc, G.V., Mgller, A.: Detecting blocking errors in
go programs using localized abstract interpretation. In: Proceedings
of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE °22, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3551349.3561154,
https://doi.org/10.1145/3551349.3561154

Wood, S.: Hyperledger Fabric - Issue #5048: Panic on leveldb range
query fabric peer (2024), https://github.com/hyperledger/fabric/issues/
5048, Accessed: 05/2025

Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks
of hyperledger fabric smart contracts. In: 2019 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE).
pp. 1-10 (2019). https://doi.org/10.1109/IWBOSE.2019.8666486
Yamashita, K., Ry, J.: Chaincode Analyzer (2020), https://github.com/
hyperledger-labs/chaincode-analyzer, Accessed 02/2025

https://doi.org/10.1007/s10270-009-0132-5
https://github.com/crypto-com/cosmos-sdk-codeql
https://github.com/crypto-com/cosmos-sdk-codeql
https://docs.cosmos.network/v0.53/learn/intro/overview
https://docs.cosmos.network/v0.53/learn/intro/overview
https://docs.tendermint.com/v0.35/
https://docs.tendermint.com/v0.35/
https://doi.org/10.1145/3551349.3561154
https://github.com/hyperledger/fabric/issues/5048
https://github.com/hyperledger/fabric/issues/5048
https://github.com/hyperledger-labs/chaincode-analyzer
https://github.com/hyperledger-labs/chaincode-analyzer

	Introduction
	Errors Handling Issues in Go Blockchains
	Silent Running Despite Incorrect State or Data
	Unexpected Blockchain Application Crashes

	Static Detection of Error Handling Issues
	Detection of Unhandled Errors
	Detection of panic Execution within Critical Components

	Experimental Evaluation
	Experimental Datasets
	Quantitative Evaluation
	Qualitative Evaluation
	Unexpected Blockchain State on FabCar
	Panic on Althea Cosmos Gravity Bridge

	Related Work
	Conclusion
	References

