
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-024-00778-7

GENERAL

Special Issue: CSV 2024

Challenges of software verification

Vincenzo Arceri1 · Luca Negrini2 · Luca Olivieri2 · Pietro Ferrara2

Accepted: 12 December 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Software verification aims to prove that a program satisfies some given properties for all its possible executions. Software
evolved incredibly fast during the last century, exposing several challenges to this scientific discipline. The goal of the
“Challenges of Software Verification Symposium” is to monitor the state-of-the-art in this field. This special issue of
Software Tools for Technology Transfer presents novel theoretical directions and practical applications of these techniques.
The papers in this special issue are extended versions of selected symposium papers from the proceedings of the 3rd Challenges
of Software Verification Symposium (CSV), which took place at the Ca’ Foscari University of Venice, Venice, Italy, June 6–7,
2024.

Keywords Software verification · System verification · Formal methods · Static analysis · Software engineering

1 The history of the CSV symposium

The first edition1 of the “Challenges of Software Verification
Symposium” was held on May 20, 2022, after the ceremony
awarding Prof. Patrick Cousot a PhD in Computer Science
Honoris Causa by the Ca’ Foscari University of Venice. The
symposium featured 15 invited short talks (15 minutes each),
and extended versions of some of the talks were featured in
Springer Nature [1].

Having gathered interest from the community, the second
edition2 of the Symposium was held on May 25–26, 2023,
covering theoretical results in the software verification field
and their applications, presenting new tools and their impact
on the Software Engineering community. The symposium

1 https://unive-ssv.github.io/events/2022/05/20/csv.html
2 https://unive-ssv.github.io/events/2023/05/25/csv.html

comprised 18 invited full talks (30 minutes each), split into
several sessions on theoretical and practical aspects of static
analysis, abstract interpretation, software engineering, and
security. Extended versions of selected talks were featured
in a Special Section of the journal Software Tools for Tech-
nology Transfer [4].

The third edition3 of the Symposium was held on
June 6–7, 2024, following the format and topics of the pre-
vious edition. Twenty-one invited researchers from interna-
tional institutions presented their work at the Symposium,
engaging in full talks (30 minutes each), and this special
issue of the journal Software Tools for Technology Trans-
fer (STTT) collects revised and extended versions of 8 such
talks.

2 This special issue

The guest editors invited a selection of the speakers of CSV
2024 to submit extended versions of their presentations,
which were all peer-reviewed by at least three referees in
a single-blind process.

The papers selected for final publication not only present
advances in the field of software verification [5, 7, 8], but
bring contributions aimed at improving or simplifying soft-
ware engineering practices [3, 9], proving the correctness of
complex systems [2, 10], and simplifying the development
and maintenance of academic tools [6].

3 https://unive-ssv.github.io/events/2024/06/06/csv.html

� V. Arceri
vincenzo.arceri@unipr.it

L. Negrini
luca.negrini@unive.it

L. Olivieri
luca.olivieri@unive.it

P. Ferrara
pietro.ferrara@unive.it

1 University of Parma, Parma, Italy
2 Ca’ Foscari University, Venice, Italy

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00778-7&domain=pdf
https://unive-ssv.github.io/events/2022/05/20/csv.html
https://unive-ssv.github.io/events/2023/05/25/csv.html
https://unive-ssv.github.io/events/2024/06/06/csv.html
mailto:vincenzo.arceri@unipr.it
mailto:luca.negrini@unive.it
mailto:luca.olivieri@unive.it
mailto:pietro.ferrara@unive.it


V. Arceri et al.

In the following sections, we provide a summary of each
paper featured in this special issue.

2.1 Easing maintenance of academic static
analyzers [6]

Academic research in static analysis produces software im-
plementations which are time-consuming to develop, and
some need to be maintained in order to enable building
further research upon the implementation. While necessary,
these processes can be quickly challenging. This article docu-
ments the tools and techniques the authors have come up with
to simplify the maintenance of Mopsa since 2017. Mopsa is
a static analysis platform that aims to be sound. First, the
authors describe an automated way to measure precision that
does not require any baseline of true bugs obtained by man-
ually inspecting the results. Further, it improves the trans-
parency of the analysis and helps discover regressions during
the continuous integration process. Second, the authors have
taken inspiration from standard tools observing the concrete
execution of a program to design custom tools observing the
abstract execution of the analyzed program itself, such as
abstract debuggers and profilers. Finally, the authors report
on some cases of automated test case reduction.

2.2 INTRAJ: an on-demand framework for
intraprocedural Java code analysis [7]

Static analysis tools play an important role in software de-
velopment by detecting bugs and vulnerabilities. However,
running these tools separately from the code-editing process
often causes developers to switch contexts, which can reduce
productivity. Previous work has shown how Reference At-
tribute Grammars (RAGs) can be used for declarative imple-
mentation of competitive tooling for intraprocedural control-
flow and data-flow analysis of Java source code, embodied
in the tool IntraJ. In this paper, the authors demonstrate
how IntraJ can be leveraged to provide interactive anal-
ysis results directly in the editor, similar to compile-time
error detection, relying on automatic on-demand evaluation
of Reference Attribute Grammars. The authors discuss the
architecture of IntraJ and demonstrate how it can be inte-
grated into the development process in three different ways:
in the command line, in an editor integration based on the
Language Server Protocol, and in an integration with the
debugging tool CodeProber. The authors showcase the
extensibility of IntraJ by illustrating how new client anal-
yses and language constructs can be added to the frame-
work through Reference Attribute Grammar specifications.
Finally, the authors evaluate the interactive performance of
IntraJ on a set of real-world Java benchmarks, demon-
strating that IntraJ can provide interactive feedback to
developers, achieving a response time of under 0.1 seconds
for most compilation units.

2.3 ccReact: a rewriting framework for the
formal analysis of reaction systems [2]

Reaction Systems (RSs) are a computational framework in-
spired by biochemical systems, where entities produced by
reactions can enable or inhibit other reactions. RSs interact
with the environment through a sequence of sets of enti-
ties called the context. In this work, the authors introduce
ccReact, a novel interaction language for implementing and
verifying RSs. ccReact extends the classical RS model by al-
lowing the specification of recursive, nondeterministic, and
conditional context sequences, thus enhancing the interactive
capabilities of the models.

The authors provide a rewriting logic (RL) semantics for
ccReact, making it executable in the Maude system. The au-
thors prove that our RL embedding is sound and complete,
thereby offering a robust tool for analyzing RSs. Our ap-
proach enables various formal analysis techniques for RSs,
including the simulation of RSs interacting with ccReact
processes, the verification of reachability properties, model
checking of temporal (LTL and CTL) formulas, and the ex-
ploration of the system evolution through a graphical tool to
better understand its behavior. The authors apply our methods
to analyze RSs from different domains, including computer
science and biological systems. Notably, the authors examine
a complex breast cancer case study, demonstrating that our
analysis can suggest improvements to the administration of
monoclonal antibody therapeutic treatments in certain sce-
narios.

2.4 The digest framework:
concurrency-sensitivity for abstract
interpretation [8]

Thread-modular approaches to static analysis help mitigate
the state space explosion encountered when analyzing multi-
threaded programs. This is enabled by abstracting away some
aspects of interactions between threads. This paper proposes
the notion of concurrency-sensitivity, which determines how
an analysis takes the computation history of a multithreaded
program into account to exclude spurious thread interactions.
Just as for other form of sensitivity, such as flow-, context, and
path-sensitivity, there is a trade-off to be made between pre-
cision and scalability. The choice of concurrency-sensitivity
is typically hard-coded into the analysis engine. However,
the suitability of a chosen sensitivity hinges on the program
and property to be analyzed. The authors thus propose to
decouple the concurrency-sensitivity from the analysis and
realize this in a generic framework. The framework allows
for the seamless incorporation of custom abstractions of the
computation history of a thread, so-called digests, to exclude
spurious thread interactions. While concrete digests track

Springer



Challenges of software verification

properties precisely, the framework enables further abstrac-
tion through abstract digests. These may decrease the analy-
sis cost while hopefully retaining precision for the property
of interest. The authors propose digests that, e.g., track held
mutexes, thread IDs, or observed events. Digests tailored to
programming language features, e.g., condition variables or
recursive mutexes, highlight the framework’s versatility.

2.5 Abstract domain adequacy: weakening
completeness towards static analysis
precision [5]

Abstract interpretation offers sound and decidable approxi-
mations for undecidable queries related to program behavior.
The effectiveness of an abstract domain is entirely reliant on
the abstract domain itself, and the worst-case scenario is
when the abstract interpreter responds with “don’t know”,
indicating that anything could happen during runtime. Con-
versely, a desirable outcome is when the abstract interpreter
provides information that exceeds a specified level of pre-
cision, resulting in a more precise answer. The concept of
completeness relates to the precision level forfeited when
performing computations within the abstract domain. The
authors focus on the domain’s ability to express program be-
havior, which the authors refer to as adequacy. This paper
presents a domain refinement strategy toward adequacy and
a simple sound proof system for adequacy, designed to de-
termine whether an abstract domain can provide satisfactory
responses to specified program queries. Notably, this proof
system is both language- and domain-agnostic and can be
readily incorporated to support static program analysis.

2.6 Reformulating regression test suite
optimization using quantum annealing – an
empirical study [9]

Maintaining software quality is crucial in the dynamic land-
scape of software development. Regression testing ensures
that software works as expected after changes are imple-
mented. However, reexecuting all test cases for every mod-
ification is often impractical and costly, particularly for
large systems. Although very effective, traditional test suite
optimization techniques are often impractical in resource-
constrained scenarios, as they are computationally expensive.
Hence, quantum computing solutions have been developed to
improve their efficiency but have shown drawbacks in terms
of effectiveness. The authors propose reformulating the re-
gression test case selection problem to use quantum com-
putation techniques better. Our objectives are (i) to provide
more efficient solutions than traditional methods and (ii) to
improve the effectiveness of previously proposed quantum-
based solutions. The authors propose SelectQA, a quantum
annealing approach that can outperform the quantum-based

approach BootQA in terms of effectiveness while obtain-
ing results comparable to those of the classic Additional
Greedy and DIV-GA approaches. Regarding efficiency, Se-
lectQA outperforms DIV-GA and has similar results with the
Additional Greedy algorithm but is exceeded by BootQA.

2.7 Leveraging static analysis for cost-aware
serverless scheduling policies [3]

Mainstream serverless platforms follow opinionated and
hard-coded scheduling policies to allocate functions on the
available workers. Such policies may decrease the perfor-
mance of the application due to locality issues (e.g., func-
tions executed on workers far from the data they use). APP is
a platform-agnostic declarative language that mitigates these
problems by allowing serverless platforms to support mul-
tiple per-function scheduling logics. However, defining the
“right” scheduling policy in APP is far from trivial, often
requiring rounds of refinement involving knowledge of the
underlying infrastructure, guesswork, and empirical testing.

The authors propose a framework that lightens the burden
on the shoulders of users by deriving cost information from
the functions, via static analysis, into a cost-aware variant of
APP that they call cAPP. They present a prototype of such
framework, where they extract cost equations from func-
tions’ code, synthesize cost expressions through off the-shelf
solvers, and implement cAPP to support the specification and
execution of cost-aware allocation policies.

2.8 Inference of access policies through static
analysis [10]

Robot Operating System 2 (ROS 2) is the de-facto stan-
dard framework for developing distributed robotic appli-
cations. However, ensuring the correctness and security of
these applications remains a significant challenge. This pa-
per presents a novel approach to statically analyze ROS 2
applications using abstract interpretation. By extracting the
computational graph of the application, our method derives
minimal access control policies that can be use to leverage
security. The authors implemented our approach using the
Library for Static Analysis (LiSA), providing a toolset that fa-
cilitates the development of sound static analyzers for ROS 2.
The results demonstrate the effectiveness of our approach in
enhancing the security of ROS 2 applications.

Acknowledgements We thank all the authors for their contributions,
the organizers of CSV 2024 for their work in making the event possi-
ble, and the referees who reviewed the extended versions of the papers
that appear in this special issue. The presented work was partially sup-
ported by SERICS (PE00000014 – CUP H73C2200089001) under the
NRRP MUR program funded by the EU – NGEU, and by iNEST –
Interconnected NordEst Innovation Ecosystem funded by PNRR (Mis-
sion 4.2, Investment 49 1.5) NextGeneration EU (ECS_00000043 –
CUP H43C22000540006).

Springer



V. Arceri et al.

References
1. Arceri, V., Cortesi, A., Ferrara, P., Olliaro, M., et al.: Challenges

of Software Verification. Springer, Berlin (2023)
2. Ballis, D., Brodo, L., Falaschi, M., Olarte, C.: ccReact: a rewriting

framework for the formal analysis of reaction systems. Int. J. Softw.
Tools Technol. Transf. (this issue) (2025)

3. De Palma, G., Giallorenzo, S., Laneve, C., Mauro, J., Trentin, M.,
Zavattaro, G.: Leveraging static analysis for cost-aware serverless
scheduling policies. Int. J. Softw. Tools Technol. Transf. (this issue)
(2025)

4. Ferrara, P., Arceri, V., Cortesi, A.: Challenges of software verifica-
tion: the past, the present, the future. Int. J. Softw. Tools Technol.
Transf. 26(4), 421–430 (2024)

5. Mastroeni, I.: Abstract domain adequacy: Weakening complete-
ness towards static analysis precision. Int. J. Softw. Tools Technol.
Transf. (this issue) (2025)

6. Monat, R., Ouadjaout, A., Miné, A.: Easing maintenance of aca-
demic static analyzers. Int. J. Softw. Tools Technol. Transf. (this
issue) (2025)

7. Riouak, I., Fors, N., Hedin, G., Reichenbach, C.: IntraJ: an on-
demand framework for intraprocedural Java code analysis. Int. J.
Softw. Tools Technol. Transf. (this issue) (2025)

8. Schwarz, M., Erhand, J.: The digest framework: Concurrency-
sensitivity for abstract interpretation. Int. J. Softw. Tools Technol.
Transf. (this issue) (2025)

9. Trovato, A., De Stefano, M., Pecorelli, F., Di Nucci, D., De Lucia,
A.: Reformulating regression test suite optimization using quantum
annealing – an empirical study. Int. J. Softw. Tools Technol. Transf.
(this issue) (2025)

10. Zanatta, G., Caiazza, G., Ferrara, P., Negrini, L.: Inference of
access policies through static analysis. Int. J. Softw. Tools Technol.
Transf. (this issue) (2025)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Springer


	Challenges of software verification
	Abstract
	The history of the CSV symposium
	This special issue
	Easing maintenance of academic static analyzers [6]
	INTRAJ: an on-demand framework for intraprocedural Java code analysis [7]
	ccReact: a rewriting framework for the formal analysis of reaction systems [2]
	The digest framework: concurrency-sensitivity for abstract interpretation [8]
	Abstract domain adequacy: weakening completeness towards static analysis precision [5]
	Reformulating regression test suite optimization using quantum annealing -- an empirical study [9]
	Leveraging static analysis for cost-aware serverless scheduling policies [3]
	Inference of access policies through static analysis [10]

	References


