
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-024-00777-8

GENERAL

Special Issue: CSV 2024

Inference of access policies through static analysis

Giacomo Zanatta1 · Gianluca Caiazza1 · Pietro Ferrara1 · Luca Negrini1

Accepted: 12 December 2024
© The Author(s) 2025

Abstract
Robot Operating System 2 (ROS 2) is the de-facto standard framework for developing distributed robotic applications.
However, ensuring the correctness and security of these applications remains a significant challenge. This paper presents a
novel approach to statically analyze ROS 2 applications using abstract interpretation. By extracting the architecture graph of
the application, our method derives minimal access control policies that can be used to leverage security. We implemented
our approach using the Library for Static Analysis (LiSA), providing a toolset that facilitates the development of sound
static analyzers for ROS 2. The results demonstrate the effectiveness of our approach in enhancing the security of ROS 2
applications.

Keywords Static Analysis · Abstract Interpretation · Access Policies · Robotics · Cybersecurity

1 Introduction

Robotic applications, Industrial Control Systems (ICS), and,
more broadly, Cyber-Physical Systems (CPS) are becom-
ing increasingly prevalent, seamlessly integrating into vari-
ous aspects of our daily lives, including safety-critical tasks.
From autonomous vehicles to teleoperated medical robots,
these systems perform essential functions where human lives
and environmental protection are at stake. Therefore, it is
crucial to thoroughly assess how system malfunctions or
misbehavior could compromise or jeopardize safety [1].

Historically, robotics development has prioritized func-
tionality and task completion over security, with no design
effort spent defending against malicious actors [2]. This ap-
proach was sufficient when these systems operated in con-
trolled, greenfield environments (e.g., laboratories) where
security risks were minimal, interactions were closely mon-
itored, and connectivity to third parties was either limited or
nonexistent. However, as these devices transition into real-

world products and are deployed in uncontrolled, brownfield
environments, safety concerns have grown significantly [3].

Robot Operating System (ROS) [4] and its successor, ROS
2 [5], have become the de facto standard frameworks for
robotic development. In recent years, the importance of secu-
rity within the ROS community has grown. A 2022 commu-
nity survey revealed that 73% of participants recognized the
need for increased investment in protecting their robots from
cyber threats [6]. Despite this awareness and openness to in-
vestment, only 26% of participants reported having actually
invested in such security measures. This disparity highlights
a critical challenge: while the market acknowledges the ne-
cessity of robust security, the complexity of determining the
most effective path forward often leads to hesitation. With-
out a clear sense of which solutions will provide the greatest
return on investment (ROI), organizations may delay or limit
their security spending, leaving systems vulnerable even as
the need for protection becomes increasingly urgent.

We consider ROS 2 to be an excellent candidate for our
research not only due to its widespread market adoption
but also because it exemplifies the principles seen in other
modern robotic and CPS protocols. For instance, protocols
like Eclipse Zenoh and various Internet of Things (IoT) so-
lutions like Apple HomeKit, Google Home, and the Mat-
ter Alliance rely on complex, distributed architectures with
loosely coupled graph representations. This architectural ab-
straction simplifies development, enhances code portability
across different versions and technology solutions, and sup-
ports our goal of achieving hardware-agnostic security.

� G. Zanatta
giacomo.zanatta@unive.it

G. Caiazza
gianluca.caiazza@unive.it

P. Ferrara
pietro.ferrara@unive.it

L. Negrini
luca.negrini@unive.it

1 Ca’ Foscari University, Venice, Italy

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00777-8&domain=pdf
mailto:giacomo.zanatta@unive.it
mailto:gianluca.caiazza@unive.it
mailto:pietro.ferrara@unive.it
mailto:luca.negrini@unive.it

G. Zanatta et al.

Currently, ROS 2 builds upon the Data Distribution Ser-
vice (DDS) Security (DDS-Security) specifications, imple-
mented within the ROS Client Library (RCL) to provide
security features. With Secure ROS 2 (SROS2) [7], develop-
ers can access utilities that help set up security configurations
that the RCL can use. These tools ease security deployment
by managing tasks such as handling Certificate Authorities
(CAs), identity artifacts for nodes, and governance files while
also translating ROS 2 security terms into low-level DDS
permissions.

As of this writing, the ROS community is actively working
on supporting alternative middleware solutions to comple-
ment Secure DDS.1 In this effort, security features such as
Encryption, Authentication, and Access Control have been
identified as “must-have” requirements (as defined in RFC
2119) [8].

In ROS 2, constructing security policies is a complex and
error-prone task due to the challenges of manually capturing
all possible interactions within the system. Currently, devel-
opers rely on exhaustive testing, which involves creating a
series of test cases to simulate a range of runtime behaviors.
Each test captures a snapshot of active nodes, topics, services,
and actions observed during that specific execution. Devel-
opers then merge these snapshots, combining data across test
cases to approximate the complete set of interactions for a
policy. However, this merging process is inherently limited to
the conditions covered by the tests, often missing interactions
that could occur in different runtime scenarios.

A correct policy, in this context, is one that adheres to the
Principle of Least Privilege, allowing each node to interact
only with the minimum set of resources necessary for its
function [44]. Manual testing-based approaches risk over-
or under-provisioning permissions, potentially creating ei-
ther insecure or functionally restrictive policies. Our tool,
LiSA4ROS2, addresses this by applying static analysis to ex-
haustively approximate all possible interactions, generating
security policies that meet this correctness criterion without
relying solely on runtime testing.

As policies evolve over time—due to system updates,
added functionalities, or new security requirements—
maintaining correctness becomes increasingly difficult.
When multiple developers contribute to the process, the risk
of inconsistencies and oversights rises, leading to policies
that may either overgrant or undergrant permissions. These
issues are exacerbated by the fact that each developer may
have different interpretations of the system’s needs, further
complicating the effort to maintain a unified and minimal
policy set.

We argue that relying solely on the skills and intuition of
developers to establish security policies is not a sustainable

1 https://discourse.ros.org/t/investigation-into-alternative-
middleware-solutions/32642.

or effective approach. More usable, automated solutions are
needed to reduce the likelihood of human error and ensure
that policies remain correct, consistent, and aligned with
security best practices, even as they evolve over time.

Contributions To address these challenges, we introduce
LiSA4ROS2 [9, 10], a tool for the automatic extraction of
security policies from source code via abstract interpreta-
tion. This tool performs a sound static analysis over ROS 2
Python applications, computing an overapproximation of the
architectural graph (named ROS Computational Graph) and
generating a correct and minimal configuration for ROS 2
security policies. In this paper, which extends our previous
work [9], we provide a formalization of the tool.

LiSA4ROS2 is implemented as an extension of the Li-
brary for Static Analysis (LiSA) [11, 12]. Starting from an
ROS 2 Python application, LiSA4ROS2 extracts the pro-
gram’s ROS Computational Graph and generates an XML-
based access policy specification. We evaluated LiSA4ROS2
using both official tutorial code and real-world ROS 2 Python
applications from GitHub, covering all ROS 2 communica-
tion patterns.

LiSA4ROS2 is fully automatic, and its integration with
SROS2 within the DevSecOps model enhances both usabil-
ity and security. Moreover, it can be generalized for use in
other robotics and CPS ecosystems where graph-based archi-
tectures are applied across multiple programming languages.
The tool, along with Docker images and results, is available
in the following GitHub repositories:

– https://github.com/lisa-analyzer/lisa4ros2
– https://github.com/lisa-analyzer/lisa4ros2-fe

Outline Section 2 gives some background about the Robot
Operating System 2 (ROS 2) framework, proposing a run-
ning example that will accompany us throughout the reading.
Section 3 sets up the formalization of the paper. Section 4
presents our static analysis tool, LiSA4ROS2. In Sect. 5 we
evaluate the tool on a set of selected examples. Related and
future work are presented, respectively, in Sects. 6 and 7.
Section 8 concludes. Two appendices discuss the Data Dis-
tribution Service (DDS) permissions, while in the last one
we present an algorithm for extracting the policies.

2 Robot Operating System 2 (ROS 2)

The Robot Operating System 2 (ROS 2) framework [5] is a
powerful suite of libraries and tools for building distributed
robotic applications. Its predecessor, ROS 1 [4], quickly es-
tablished itself as a popular framework for robotic research
and development. However, despite its success, ROS 1 had

Springer

https://discourse.ros.org/t/investigation-into-alternative-middleware-solutions/32642
https://discourse.ros.org/t/investigation-into-alternative-middleware-solutions/32642
https://github.com/lisa-analyzer/lisa4ros2
https://github.com/lisa-analyzer/lisa4ros2-fe

Inference of access policies through static analysis

several limitations, particularly in terms of real-time perfor-
mance, scalability, security, and support for multirobot sys-
tems. These challenges became more evident as the robotics
field evolved and more complex, safety-critical applications
emerged.

To address these shortcomings, ROS 2 was introduced
in 2015. Built from the ground up, ROS 2 was designed to
overcome the limitations of its predecessor by incorporating
modern middlewares (e.g., DDS) to provide improved sup-
port for real-time control, enhanced security, greater flex-
ibility in network configurations, and better multiplatform
compatibility.

At the core of an ROS 2 application is a collection of
processes, known as nodes, that collaborate by exchanging
messages to achieve a shared objective. The behavior of
these nodes is defined using a client library, a lightweight,
high-level API that simplifies the creation of ROS 2 appli-
cations. These libraries abstract away the complexities of
the underlying framework, enabling developers to concen-
trate on application logic while the internal communication
mechanisms are seamlessly managed.

At the time of writing, ROS 2 officially supports two
primary client libraries: rclpy2 for Python and rclcpp3 for
C++. These libraries allow developers to build and define
nodes in either Python or C++, offering flexibility based on
the project’s requirements.

In the following, we will provide informal definitions of
key ROS 2 concepts to further clarify the framework’s fun-
damental components.

Node In ROS 2, a node is a fundamental computational
unit, essentially a distinct process running on a machine.
Each node is typically responsible for a specific function
within the robot’s control system, such as processing sen-
sor data, controlling actuators, performing path planning, or
managing communication. Nodes are the building blocks of
modular robotic systems, allowing developers to break down
complex tasks into smaller, more manageable components
while enabling the reuse and sharing of preexisting modules.

For example, a node might interface with sensors to col-
lect real-time data from the external environment, such as
temperature, distance, or visual input—and then process this
information to make informed decisions. Similarly, nodes
can issue commands to actuators, enabling physical actions
like moving the robot’s arms or wheels, executing navigation
tasks, or dynamically adjusting behavior based on changing
environmental conditions.

Each node is uniquely identified by a name and can be or-
ganized within a namespace, creating a hierarchical structure
that helps manage complexity in larger systems, much like the

2 https://github.com/ros2/rclpy.
3 https://github.com/ros2/rclcpp.

tree structure of a file system. The use of namespaces serves
several key purposes: (i) it prevents naming conflicts by al-
lowing multiple nodes with the same base name to coexist
in different contexts; (ii) supports modular development by
grouping related nodes together, and enhances clarity regard-
ing how different system components interact; (iii) enables
seamless integration of additional nodes or subsystems, by
allowing for easy addition, removal, or replacement of nodes
without disrupting or adapting the overall architecture by
enforcing separation of concerns between the robot’s func-
tionality.

Communication mechanisms Nodes communicate with
each other by exchanging messages. Depending on the use
case, communication can occur through different mecha-
nisms:

– Topics. A topic is a named channel that facilitates in-
ternode communication. Nodes can publish messages to
a topic or subscribe to receive messages from it. Top-
ics support asynchronous and decoupled communication,
making them ideal for scenarios where data needs to be
shared across multiple nodes.

– Services. For synchronous communication, nodes can uti-
lize services. Services provide a request-response commu-
nication model between two nodes. In this model, a node
acts as a server (hosting the service), while other nodes,
acting as clients, can request information or perform oper-
ations by connecting to the server. Services are suited for
interactions requiring immediate feedback or when direct
communication between nodes is needed, such as execut-
ing critical tasks.

– Actions. Actions also use a client/server model but are
tailored for long-running tasks that may need to be pre-
empted. An action client sends a goal to an action server,
specifying a task to be executed (e.g., reaching a specific
coordinate). The server periodically sends feedback mes-
sages to inform the client about the progress of the task
(e.g., “I am X meters from the destination”). Upon com-
pletion, the server sends the final result to the client (e.g.,
“I have reached the destination”). Clients have the ability
to cancel ongoing actions if necessary.

ROS computational graph The interactions between
nodes in an ROS 2 system are represented by a specific net-
work graph known as the ROS Computational Graph. This
graph models the network of nodes and their connections
within the system. It provides a structural representation that
helps in understanding how nodes interact with each other
and in verifying the correctness of the architectural design
of an ROS 2 application. An example of this type of graph is
shown in Fig. 1, which will be discussed in detail in the fol-
lowing section. Although the term computational graph may
have different interpretations in other fields, in this work, we
stick to the terminology used by the framework.

Springer

https://github.com/ros2/rclpy
https://github.com/ros2/rclcpp

G. Zanatta et al.

Fig. 1 Extracted graph of the minimal Talker–Listener example

2.1 Talker–listener ROS 2 Python example

As a running example for our paper, we introduce the Talker–
Listener ROS 2 Python example. This example is part of
the official ROS 2 documentation4 and serves as a minimal
program demonstrating communication between two nodes.
It is used as a tutorial to explain how to set access controls
in ROS 2.5

The code provided in Listing 1 defines a Talker class
(line 6) that extends the Node object from the rclpy li-
brary, making instances of this class fully functional ROS
2 nodes. Specifically, within the constructor of the Talker
class (line 7), the constructor of the superclass, i.e., rclpy’s
Node (line 8), is called. This constructor creates the node,
registers it with the ROS 2 system, and enables it to send
and receive messages. The string parameter passed to the
superclass constructor specifies the node’s name (talker).
Line 10 defines a publisher using the create_publisher
statement. This statement declares a topic named chatter
(the second parameter) if it does not already exist in the
ROS Computational Graph and instantiates a publisher for
sending messages of type String over that topic (the first
parameter). The third parameter specifies the Quality of Ser-
vice settings for the publisher, which is beyond the scope of
this explanation. Continuing with the constructor implemen-
tation, line 12 defines a timer that triggers the execution of
a function (the second parameter, timer_callback) every
timer_period seconds. The callback creates a new String
message (lines 15–16) and publishes it using the previously
created publisher (line 19). In the main function, we (i) ini-
tialize the ROS 2 environment (line 23), (ii) instantiate the
node (line 24), and (iii) let the ROS 2 framework manage the
node (line 25).

Listing 2 illustrates a similar approach. Here, we create a
node named listener (line 8). Instead of a publisher, this
node uses the create_subscription statement (line 9) to
create a subscriber for the same chatter topic as the talker
node. This setup enables communication between the two
nodes. The third parameter of the create_subscription
call specifies the callback function, which is triggered for
every message received from the topic. The ROS Compu-
tational Graph for this example is depicted in Fig. 1, where
ovals represent nodes and rectangles represent topics. An arc

4 Available at https://github.com/ros2/demos/tree/rolling/demo_
nodes_py/demo_nodes_py/topics.

5 https://docs.ros.org/en/jazzy/Tutorials/Advanced/Security/Access-
Controls.html.

Listing 1 Python’s ROS 2 Talker example

Listing 2 Python’s ROS 2 Listener example

from a node to a topic indicates that the node publishes to
that topic, while an arc from a topic to a node indicates that
the node subscribes to that topic.

2.2 ROS 2 layered architecture

ROS 2 is designed as a modular, layered framework that ab-
stracts internal complexities from the user. This layered ap-
proach divides the system into distinct functional segments,
each with its own responsibilities, allowing developers to im-
plement applications agnostic to the underlying communica-
tion middleware and making the framework more adaptable
and versatile.

Springer

https://github.com/ros2/demos/tree/rolling/demo_nodes_py/demo_nodes_py/topics
https://github.com/ros2/demos/tree/rolling/demo_nodes_py/demo_nodes_py/topics
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Security/Access-Controls.html
https://docs.ros.org/en/jazzy/Tutorials/Advanced/Security/Access-Controls.html

Inference of access policies through static analysis

The importance of this architecture is well-illustrated in
the paper by Macenski et al. [5], but to provide a more intu-
itive understanding, consider the Talker example discussed
in the previous section. When creating a publisher (line 10),
the create_publisher function does not directly handle
the registration of the publisher in the network. Instead, it
delegates this task to an internal layer known as the rcl
(ROS 2 Client Library) layer.

The rcl layer serves as an intermediary between the high-
level client libraries, such as rclpy (for Python) and rclcpp
(for C++), and the lower-level communication layer. These
client libraries essentially act as wrappers for the rcl func-
tions, allowing developers to write code without needing to
worry about the intricacies of network communication or
middleware selection. The rcl library, in turn, hands off
communication tasks to an even lower-level layer called the
rmw (ROS 2 Middleware) layer.

The rmw layer plays a crucial role in decoupling ROS 2
from specific communication middleware implementations.
It defines a set of standardized APIs for communication op-
erations, such as creating publishers, subscribers, services,
and clients. Different middleware implementations can be
plugged in underneath the rmw layer, enabling ROS 2 to op-
erate independently of the specific middleware in use. This
flexibility allows ROS 2 applications to remain middleware-
agnostic, providing developers with the freedom to select
the middleware that best meets the performance, latency, or
feature requirements of their particular application.

Several rmw implementations are available, each corre-
sponding to different DDS (Data Distribution Service) ven-
dors. For example, ROS 2 supports rmw implementations
like Fast-DDS (rmw_fastrtps_cpp) and Cyclone DDS
(rmw_cyclonedds_cpp). By abstracting away middleware-
specific details, ROS 2 enables developers to change middle-
ware implementations without modifying their application
code. This can be done simply by adjusting configuration
settings, typically through environment variables, at runtime.
As a result, the same ROS 2 application can run on different
middleware backends, offering flexibility for a wide range of
use cases.

Currently, Fast-DDS is the default middleware in ROS
2 and is also the most widely used, owing to its balance of
performance, feature set, and ease of configuration. However,
the modular architecture of ROS 2 means that developers
can easily switch to other middleware options as needed,
making ROS 2 a highly adaptable framework for robotics
and distributed systems.

2.3 Securing an ROS 2 application

Securing an ROS 2 application requires the explicit defini-
tion of ROS 2 security policies that are subsequently mapped
to the Data Distribution Service (DDS) specifications. To

streamline this process and provide a standardized approach
to security policy management, agnostic with respect to the
underlying communication middleware, the framework pro-
vides a powerful command-line tool known as Secure ROS
2 (SROS2) [7]. SROS2 acts as a versatile toolset for im-
plementing various security configurations. It enables de-
velopers to generate security artifacts such as keys, certifi-
cates, and permission files, which are necessary for enforcing
Access Control and Encryption. Additionally, SROS2 auto-
mates many of the complex steps involved in securing ROS
2 nodes (e.g., Certificate Authority (CA) management, Key-
store), making it easier to integrate security features into an
application without requiring deep expertise in cybersecurity
deployment practices.

Developers are still responsible for configuring access
control, which involves manually defining specific permis-
sions for each node, detailing which topics, services, or
actions they are allowed to access or perform. This fine-
grained access control ensures that only authorized nodes
can communicate or interact with particular system compo-
nents, thereby reducing the attack surface of the application.
For Encryption, which secures data in transit by rendering it
unreadable to unauthorized parties, DDS enforces this pro-
tection automatically once the ROS’ security flag is enabled
and the appropriate security artifacts (generated by SROS2)
are correctly configured and provisioned. This ensures that
sensitive information remains protected from eavesdropping
or tampering, thereby enhancing the overall security of the
ROS 2 application.

In the following, we will explain in detail how access
policies in ROS 2 are defined and we will see how to applying
these security measures in a practical running example.

2.3.1 Access policies

In SROS2, access policies are implemented through XML
files. The structure begins with a set of enclaves, each iden-
tified by a unique path. The rule of thumb is that we group
all the nodes with similar functionalities or security needs
in an enclave, establishing logical boundaries for centralized
security management.

Each enclave contains a set of rules known as a profile,
which is associated with individual nodes identified by their
names and namespaces. These profiles outline permissions
for all the different types of entities in ROS 2, such as top-
ics, services, and actions. Permissions are managed through
specific XML tags for each entity type, with each tag marked
with ALLOW or DENY.

ALLOW explicitly grants access to the specified entities or
actions. However, to provide more granular control, DENY is
used to restrict or override the permissions granted by ALLOW.
Essentially, DENY refines the scope of ALLOW by blocking

Springer

G. Zanatta et al.

Listing 3 Subscriber
Permission example

specific operations or resources that would otherwise be per-
mitted. For example, while ALLOW might permit access to
all topics in a namespace, a subsequent DENY can be used to
block access to particular topics within that broader permis-
sion set. The rest of the behavior for resource access adheres
to the ‘Deny by default’ principle, where only explicitly au-
thorized actions are permitted, and all others are implicitly
blocked.

In particular, we can model the following tags:

– Topics. XML tags for topics specify permissions for pub-
lishing and subscribing. For instance,<topics publish=
"ALLOW"> permits a node to publish to the listed topics that
follow the tag, while <topics subscribe="ALLOW">
permits subscribing to those topics. Conversely, <topics
publish="DENY"> and <topics subscribe="DENY">
block publishing or subscribing to the specified topics.

– Services.<services reply="ALLOW"> and<services
request="ALLOW"> define whether a node can act as a
service server or client, respectively. Tags marked with
DENY restrict these roles by blocking the node from acting
as a service server or client for the specified services.

– Actions. <actions execute="ALLOW"> and <actions
call="ALLOW"> allow a node to be an action server or
client, respectively. Corresponding tags marked with DENY
block these roles.

Additionally, SROS2 policy files permit the usage of basic
fnmatch-style patterns:

– * for matching everything;
– ? for matching any single character;
– [sequence] for matching any character in the sequence;
– [!sequence] for matching any character not in the se-

quence.

The snippet in Listing 3 illustrates a set of permissions that
allows the node to subscribe to all topics within the names-
pace rooted at /foo (line 2) and to the topic /bat, located at the
root level (line 3). However, it explicitly denies subscription
access to the /foo/bar topic (line 6) within the foo namespace,
thereby refining the granted permissions with more granular
control.

2.3.2 Minimal access control policies

An access control policy is considered minimal if it grants the
least number of permissions necessary for nodes to perform
their required functions, adhering to the Principle of Least

Listing 4 ROS 2 Security setup

Privilege (PoLP). This ensures that no extraneous access
rights are provided beyond what is strictly needed.

2.4 Running example

In the following section, we will dive into the practical imple-
mentation of access policies and demonstrate the application
of security measures using the Talker–Listener example in-
troduced in Sect. 2.1. We will illustrate how permissions are
configured for each node and explain the process of setting
up encryption to safeguard data in transit, thereby ensuring
a secure communication channel between the nodes.

The first step in securing these nodes is to create a keystore
and configure the ROS 2 system to use it, as shown in Listing
4.

In detail, we first create a keystore in the current directory
to store the public and private keys required for securing
our ROS 2 application. The command create_keystore
keystore initializes the keystore. Next, two separate en-
claves are created for the Talker and Listener nodes us-
ing create_enclave keystore /talker_listener/
talker and create_enclave keystore /
talker_listener/listener, respectively. As previously
mentioned, an enclave groups nodes with common security
policies, and in this case, each node is assigned to its own
enclave, allowing for more tailored security measures.

To enable and enforce security, we export three environ-
ment variables:

– ROS_SECURITY_KEYSTORE specifies the location of the
keystore.

– ROS_SECURITY_ENABLE=true activates security mode,
ensuring that ROS 2 applies security policies when running
the nodes.

– ROS_SECURITY_STRATEGY=Enforce strictly enforces
these policies. If a node does not conform to the speci-
fied rules, it will fail to launch, ensuring only compliant
nodes communicate within the system.

These steps establish a secure environment, enabling ac-
cess control and encryption to protect the data exchange.

During this process, SROS2 automatically generates two
dummy DDS permission XML files (see Appendix A), one
for the Talker node and one for the Listener node. However,
these files allow by default the nodes to publish or subscribe

Springer

Inference of access policies through static analysis

Listing 5 Policy generated by the SROS2 security tool for the Listener
node

to any topic. It is the developer’s responsibility to refine
these policies by editing the rules and minimizing permis-
sions, ensuring that nodes have access only to the necessary
resources.

While this is relatively straightforward for a simple
project, it becomes laborious when dealing with large-scale
systems with numerous nodes and complex communication
patterns.

Instead of manually writing these policies, SROS2 offers a
tool to automatically generate them by inspecting the ROS 2
network. This process requires temporarily disabling security
by setting to false ROS2_SECURITY_ENABLE to allow node
discovery. The policy generated reflects the actual activity
and interactions of the system; it captures all topics, services,
and actions that the nodes have utilized during sampling.
However, this approach results in a single, generalized policy
that encompasses the entire ROS graph, which does not align
with the PoLP. To achieve proper segmentation and ensure
that each node only accesses the communication channels
relevant to its role, we must individually run each node. By
doing so, SROS2 can generate a tailored policy, capturing
nodes’ specific interactions and access requirements.

Below, we showcase how to do it for the Listener node,
for which we need to generate a security policy. At first, we
run SROS2 on the live Listener node as follows:

rosdev@testbed:~/ros2_ws$ ros2 security generate_policy
policy.xml

As a result, this command creates an XML policy file as
shown in Listing 5.6

Once the policy has been created, we can generate the
corresponding security artifacts by invoking the following
command:

1rosdev@testbed:~/ros2_ws$ ros2 security generate_artifacts -k
keystore -p policy.xml

6 To streamline the discussion, we omit internal services and topics
used by the ROS 2 node, which are not explicitly defined in the appli-
cation code. The full policy, including all internal communications, is
provided in Appendix B.

Listing 6 Policy generated by SROS2 for the Talker node

Listing 7 Example of execution of Listener node with security enabled

Listing 8 A more complex chatter_callback function

After provisioning the Listener node and generating its
associated policy, we proceed by applying the same steps to
the Talker. The policy generated for the Talker node is shown
in Listing 6.

With both nodes’ policies correctly established and in-
tegrated, and security fully enabled, we can run the Talker
and Listener nodes in secure mode. Upon execution, the
Listener successfully receives messages from the chatter
topic, confirming that secure communication between the
nodes is functioning as intended and showed in Listing 7.

We now introduce an additional layer of complexity to this
example. Specifically, we modify the Listener class to pub-
lish a message on the chatter2 topic if it receives the mes-
sage "Hello world: 100". This behavior is implemented
by updating the chatter_callback function, as shown in
Listing 8.

However, since the Listener node lacks the necessary per-
missions to publish on the chatter2 topic, the ROS 2 pro-
cess managing the Listener will fail. This failure occurs be-

Springer

G. Zanatta et al.

Listing 9 Permission failure with security enforced

cause the system attempts an unauthorized publishing oper-
ation, which is blocked by the enforced security policies, as
illustrated in Listing 9.

Since the publish declaration in the Listener node is cre-
ated only upon receiving a specific message, generating the
policy with SROS2 before this message is received will ex-
clude the publishing capability from the policy. This results
in an incomplete and broken policy. Even if we were to
regenerate the policies from scratch, the issue might per-
sist. This is because the regenerated policy would still only
capture the system’s state at the moment of its generation,
potentially missing dynamically created components or in-
teractions that occur after the policy has been generated. This
highlights a limitation of generating permissions through dy-
namic inspection, which can fail when access to a channel
is nondeterministic. To overcome this issue, static analy-
sis can be employed. Our tool, LiSA4ROS2, is capable of
extracting these communication links ahead of time. Sup-
pose that a developer has built the LiSA4ROS2 project by
following the README in the official repository; the tool
can generate the correct SROS2 policies for both the Talker
and Listener nodes by running the following command:

The generated policy for the Listener node is stored in
output/policies/listener/policy.xml, as shown in
Listing. 10.

Notably, the chatter2 topic is now included in the policy,
addressing the issue of missing permissions. This ensures
that the Listener node can correctly publish to chatter2
when required. The updated ROS Computational Graph,
which includes the chatter2 topic, is illustrated in Fig. 2.

With the newly generated policy in place, which now in-
cludes the necessary permissions and the artifacts generated
by the SROS2 toolchain, the Listener node is equipped with
the proper authorization. Consequently, it can successfully

Listing 10 Policy generated by LiSA4ROS2 for the Listener node

Fig. 2 Extracted graph of the minimal example with the chatter2 topic

Listing 11 Correct execution of the modified Listener node

publish messages on the chatter2 topic without encounter-
ing any security-related errors, as shown in Listing 11.

3 Formalization

In this section, we formalize our static analysis, how ROS
Computational Graphs are extracted from the static analysis
results, and how access policies are extracted from ROS
Computational Graphs.

3.1 Notation and background

In the rest of this section, we will denote sets with names
starting with an upper-case character and elements in sets
with lower-case characters. Given two sets A and B, we will

Springer

Inference of access policies through static analysis

Fig. 3 Minimal language

denote the Cartesian product of these two sets by A ×B, and
functions with domain A and codomain B by A→ B. Given
a set A, the powerset of A is denoted by ℘(A).

We denote by 〈A,≤,⊥,�,�,�〉 a lattice of elements in A
with ≤ as partial ordering operator, ⊥ as bottom element, �
as top element, � as the least upper bound operator, and �
as the greatest lower bound operator.

Our approach relies on the abstract interpretation frame-
work [13, 14]. We will denote concrete sets and elements by
C and c, respectively, and abstract sets and elements by A and
a, respectively. In addition, 𝛾A will denote the concretization
function of the abstract domain A. An abstract domain is a
sound approximation of a concrete one if they form a Galois
connection; formally, 〈C,⊆〉 −−−−→←−−−−𝛼A

𝛾A
〈A,�〉.

The runtime semantics of a programming language is for-
malized as a concrete semantics on the concrete domain. In
particular, given a statement st and a concrete state c ∈ C,
the concrete semantics formalizes the results of the execu-
tion producing a concrete exit state c′ ∈ C. We represent
this semantics by S�st, c� = c′. Then, the abstract semantics
overapproximates the concrete one. In particular, we denote
the abstract semantics by S�st, c� = c′.

3.2 Syntax

We focus our formalization on a minimal language that high-
lights all the main features of ROS 2 Python code. Figure 3
contains (a part of) the syntax of this language, and in par-
ticular:

– an expression exp might be a string expression sexp, a
heap expression hexp, a pointer to a method, or a method
call;

– a string expression sexp might be a constant string, the
concatenation of two strings, or other expressions returning
strings;7

– a heap expression hexp might allocate an object, or access
a field; and

– a statement st might be the assignment of an expression
to either a local variable or a field, or just an expression.

Statements represents the set containing all the state-
ments of our language.

7 We left this definition open since the variety of operations on strings
is extremely wide.

3.3 Concrete domain and semantics

The definition of the concrete domain is rather standard. In
particular, a state of the computation in Σ is represented as
a pair of an environment in Env (relating variables in Var
to values in Val) and a heap in Heap (relating references in
Ref to fields in Field to values in Val). A value might be a
reference in Ref, or a string in Str. Definition 1 formalizes
concrete states.

Definition 1 (Concrete states)

Val = Str ∪Ref
Env = Var→ Val
Heap = Ref→ Field→ Val
Σ = Env ×Heap

As usual in the abstract interpretation framework, the con-
crete domain is defined over a set of states. This allows the
representation of user inputs, configuration parameters, and
any kind of nondeterministic behavior of the program.

Definition 2 (Concrete domain)
The concrete domain is a complete lattice over a set of
states using the standard set operators. Formally, 〈℘(Σ),⊆,
∅,Σ,∪,∩〉.

This forms a complete lattice by basic properties of set
operators.

For the sake of simplicity, we assume that a standard
small-step semantics of statements is provided. This seman-
tics, given a statement as defined in Fig. 3 and a state as
defined in Definition 1, returns a concrete state in Σ repre-
senting the results of the execution of the given statement on
the given entry state. The concrete semantics is then defined
as the pointwise application of the small step semantics over
all the entry states.

Definition 3 (Concrete semantics)
Let → be the small step semantics of the language defined
in Fig. 3. In particular, 〈𝜎, st〉 → 𝜎′ represents that this
semantics, given an entry state 𝜎 ∈ Σ and a statement st,
returns an exit state 𝜎′ ∈ Σ. The collecting semantics over
the concrete domain is then formalized as follows:

S�st,C� = {𝜎′ : ∃𝜎 ∈ S : 〈st, 𝜎〉 → 𝜎′}.

3.4 Abstract domain and semantics

Our analysis needs to have precise information about:

1. the string values computed by expressions to identify
names of nodes in the robotic system, topics used to com-
municate, and

Springer

G. Zanatta et al.

2. the objects allocated in the heap that represent robotic
nodes in the network.

Usually, it is quite straightforward to track this informa-
tion in ROS 2 programs, since nodes, channels, and listeners
are statically identifiable from the code. On the one hand,
we apply standard string constant propagation analyses [15].
For each variable, this analysis tracks either a bottom value
(meaning that no value is possible at a given program point),
a top value (meaning that any value might be possible), or a
single concrete string value (meaning that in all the possible
executions that variable will always have that constant value).
On the other hand, we abstract heap nodes through a stan-
dard allocation-based Andersen-style heap abstraction [16].
While other analyses are possible, our implementation relies
on the generic framework formalized by Ferrara [17]; we
focus our formalization on the aforementioned heap abstrac-
tion.

In our analysis, we apply the so-called direct product of
these domains (Definition 36.1 in [18]).

Let us assume that the following analyses are provided:

– a string constant propagation analysis

SV = 〈Str,�Str,⊥Str,�Str,�Str,�Str〉;

– a heap abstraction

H = 〈Heap,�Heap,⊥Heap,�Heap,�Heap,�Heap〉.

Given a variable, we assume that a state of these analyses
returns either a top, a bottom, or a precise value. In particular,
string constant propagation returns values in Str, while the
heap abstraction returns an abstract heap identifier in HeapId.
As usual in allocation-based heap abstraction, we assume that
different elements in HeapId approximate disjoint areas of
concrete memory. Formally,

– ∀x ∈ Var, s ∈ Str : s(x) ∈ Str ∪ {⊥Str,�Str};
– ∀x ∈ Var, h ∈ Heap : t(x) ∈ HeapId∪ {⊥Heap,�Heap}.

All these analyses are sound, which, following the ab-
stract interpretation theory, means that they are equipped
with a concretization and an abstract function, and they form
a Galois connection with the concrete domain. Formally,

– 〈℘(Σ),⊆〉 −−−−−→←−−−−−

𝛼
SV

𝛾
SV

〈Str,�Str〉;

– 〈℘(Σ),⊆〉 −−−−→←−−−−𝛼
H

𝛾
H

〈Heap,�Heap〉.

Definition 4 (Abstract domain)
Our abstract domain is the direct product of the string con-
stant propagation analysis and the heap abstraction. Formally,

A = SV ×H.

Therefore, a state of our analysis is represented as a tuple
((s,m, t) ∈ A where s ∈ SV, and h ∈ H).

Lemma 1 (Soundness of the abstract domain)
The abstract domain A is a sound approximation of the
concrete domain. Formally,

〈℘(Σ),⊆〉 −−−−→←−−−−𝛼
A

𝛾
A

〈SV ×H,�A〉,

where 𝛼
A

, 𝛾
A

, and �A are respectively the abstraction func-
tion, concretization function, and partial order defined as
usual in direct products (Definition 36.1 in [18]).

We assume that the string constant propagation and heap
analyses provide a sound abstract semantics following the ab-
stract interpretation framework (Sect. 18.3 of [18]). In the rest
of the formalization, we will denote by SV�st, s� = (v, s′)
and H�st,h� = (id,h

′

) the application of these semantics to
a given statement st and a given abstract state. The semantics
might return a heap identifier or string value, respectively, if
the statement returns a value.

Lemma 2 (Soundness of the abstract semantics)
We assume that SV and H provide the sound abstract se-
mantics SV�_� and H�_�, respectively. Then, the pointwise
application of the two abstract semantics to the direct prod-
uct previously defined is sound.

Proof
The proof follows immediately from the definition of the
operators of the direct product. �

3.4.1 Running example

Consider the running example we discussed in Sect. 2.1.
This example allocates two objects, a Talker instance at line
24 of Listing 1, and a Listener instance at line 16 of List-
ing 2. We represent these heap identifiers by (Talker,24) and
(Listener,16), respectively. The allocation-based heap anal-
ysis H then tracks the references to self in the constructor
and methods of Talker, and Listener points to objects allo-
cated at those program points. Instead, the string analysis SV
infers on Talker that (i) the constant talker is passed to the
constructor of Node at line 8, and (ii) the name of the topic
passed to method create_publisher at line 10 is the constant
chatter. Similarly, its application to Listener infers that (i)
the constant listener is passed to the constructor of Node
at line 8, and (ii) the name of the topic passed to method
create_subscription at line 9 is the constant chatter.

Having established a high-level formalization of the ab-
stract semantics, we now move to its practical application in
Sect. 3.5. In the next section, we take the abstract definitions
and formalization principles presented thus far and apply

Springer

Inference of access policies through static analysis

Table 1 ROS 2 APIs
Description ROS 2 API method

Create a node (1) rclpy.node.Node.__init__(name, namespace)
(2) rclpy.create_node(name, namespace)

Create a topic publisher (3) rclpy.node.Node.create_publisher(msg_type, topic)
Create a topic subscriber (4) rclpy.node.Node.create_subscription(msg_type, topic)
Create a service server (5) rclpy.node.Node.create_service(srv_type, srv_name)
Create a service client (6) rclpy.node.Node.create_client(srv_type, srv_name)
Create an action server (7) rclpy.action.ActionClient.__init__(node, action_type, action_name)
Create an action client (8) rclpy.action.ActionServer.__init__(node, action_type, action_name)

them concretely to the task of extracting the computational
graph from ROS 2 programs. This shift from theory to prac-
tice enables the generation of policies that adhere to the pre-
viously defined security principles, specifically focusing on
automating access control through accurate computational
graph extraction.

3.5 Extraction of the ROS computational graph

Starting from the results obtained by the static analysis we
just formalized, we build up the ROS Computational Graph
described in Sect. 2. In particular, we expect the analysis to
provide an abstract for each statement st ∈ Statements of
our program. With an abuse of notation, we will denote the
abstract state before at statement st by (sst,hst) ∈ A.

3.5.1 Definition

Nodes The ROS Computational Graph is a weighted graph
with two different types of nodes:

– robotic nodes, representing a robot with its name and
namespace, and

– communication channels, representing different ways of
communication. In particular, ROS 2 allows communica-
tion through topics, services, and actions.

The following definitions formalize all these components.

Definition 5 (Robotic nodes)
Robotic nodes RobNode are represented as a name in Str and
a namespace also in Str. Formally, RobNode = Str × Str.

Definition 6 (Communication channels (Topics, Services,
and Actions))
Topics, Services, and Actions are represented by a name.
Formally, Topic = Str, Service = Str, and Action = Str.

Definition 7 (ROS Computational Graph nodes)
ROS Computational Graph nodes can be robotic nodes or
communication channels. Formally, N = RobNode∪Topic∪
Service ∪ Action.

Edges In ROS Computational Graphs, edges can go (i)
from robotic nodes to communication channels or (ii) from
communication channels to robotic nodes. This means that
direct communications among robotic nodes or communica-
tion channels are impossible. Edges are weighted with the
type of data that is exchanged. The ROS 2 Python library
represents this with a reference to a type. For the sake of
simplicity, our analysis represents the type through the string
representation of its name. In this way, we apply string con-
stant propagation analysis to identify the type of exchanged
data. Therefore, we represent by ET = Str the type of com-
munication. The following definition formalizes this.

Definition 8 (Edges)
The set of weighted edges W is defined as follows:

W = RobNode × Topic × ET (Topic publisher)
∪ Topic ×RobNode × ET (Topic subscriber)
∪ RobNode × Service × ET (Service client)
∪ Service ×RobNode × ET (Service server)
∪ RobNode × Action × ET (Action client)
∪ Action ×RobNode × ET (Action server).

3.5.2 Extraction

Table 1 reports the main methods of the ROS 2 Python APIs
that create robotic nodes, topic publishers and subscribers,
service servers and clients, and action servers and clients. We
formalize a simplified version of the APIs, omitting all the ir-
relevant parameters and some minor implementation details
(e.g., namespace has a default None value when creating a
node). The official ROS 2 documentation (available at https://
docs.ros2.org/latest/api/rclpy/) provides full details on those
APIs.

In the rest of the formalization, we will omit the names-
pace of the methods and classes. Remember that sst and hst
refer to the abstract state before statement st of the string
constant propagation analysis and heap abstraction, respec-
tively. Our definitions will assume to receive precise results

Springer

https://docs.ros2.org/latest/api/rclpy/
https://docs.ros2.org/latest/api/rclpy/

G. Zanatta et al.

from these analyses. Otherwise, we assume that the analysis
will fail.8

Given a program p ⊆ Statements (where p contains all
the statements of the program), we extract nodes and edges
as follows.

Definition 9 (Node extraction)

Np =
⋃

st∈p

{
(𝑛, 𝑛𝑠) : st = Node.__init__(x, y)

∧sst (x) = 𝑛 ∧ sst (y) = 𝑛𝑠

}

∪ (1)

⋃
st∈p

{
(𝑛, 𝑛𝑠) : st = create_node(x, y)

∧sst (x) = 𝑛 ∧ sst (y) = 𝑛𝑠

}

∪ (2)

⋃
st∈p

{
𝑡 : st = x.create_publisher(y, z)∧

𝑡 ∈ Topic ∧ sst (y) = 𝑡

}

∪ (3)

⋃
st∈p

{
𝑡 : st = x.create_subscription(y, z)∧

𝑡 ∈ Topic ∧ sst (y) = 𝑡

}

∪ (4)

⋃
st∈p

{
𝑠 : st = x.create_service(y, z)∧

𝑠 ∈ Service ∧ sst (z) = 𝑠

}

∪ (5)

⋃
st∈p

{
𝑠 : st = x.create_client(y, z)∧

𝑠 ∈ Service∧ sst (z) = 𝑠

}

∪ (6)

⋃
st∈p

{
𝑎 : st = ActionClient.__init__(x, y, z)∧

𝑎 ∈ Action∧ sst (z) = 𝑎

}

∪ (7)

⋃
st∈p

{
𝑎 : st = ActionServer.__init__(x, y, z)∧

𝑎 ∈ Action∧ sst (z) = 𝑎

}

. (8)

The right part of the formalization reports the number of
the API in Table 1 it refers to.

To proceed with the formalization of edges’ extraction,
we first need to define a function that, given an abstract
heap identifier, retrieves the robotic node it is associated
with. Since a constructor can be invoked only once on a
specific object, and method create_node returns a fresh node
instance, we assume this can lead only to one node. If this is
not the case (thus, it might lead to zero or many nodes), we
let the extraction process fail.

The process of extracting a robotic node from an abstract
heap identifier is straightforward and formalized as follows.

Definition 10 (Robotic node extraction)

extractNode : HeapId→ RobNode
extractNode(id) = (𝑛, 𝑛𝑠) where
∃st ∈ p : st = Node.__init__(x, y)∧

hst (self) = id∧ sst (x) = 𝑛 ∧ sst (y) = 𝑛𝑠
∨

∃st ∈ p : st = create_node(x, y)∧
H�st,hst� = (id, h’)∧sst (x) = 𝑛 ∧ sst (y) = 𝑛𝑠.

8 We adopted this approach instead of producing very conservative
graphs since these would lead to useless access policies stating that
a node can access any channel. The experimental results will report
the number of failures and discuss how this can be reduced with more
complex analyses.

We are finally in a position to formalize how our approach
extracts edges of the ROS Computational Graph. Like nodes’
extraction, we formalize how this produces a specific edge
for each statement invoking one of the APIs in Table 1. We
recall the API number in the right part of the formalization.

Definition 11 (Edge extraction)

Ep =
⋃

st∈p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(𝑛, 𝑡, 𝑚) : 𝑡 ∈ Topic∧
st = x.create_publisher(y, z)
∧extractNode(hst (x)) = 𝑛
∧sst (y) = 𝑡 ∧ sst (z) =𝑚

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

∪ (3)

⋃
st∈p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(𝑡, 𝑛, 𝑚) : 𝑡 ∈ Topic∧
st = x.create_subscription(y, z)
∧extractNode(hst (x)) = 𝑛
∧sst (y) = 𝑡 ∧ sst (z) =𝑚

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

∪ (4)

⋃
st∈p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(𝑠, 𝑛,𝑚) : 𝑠 ∈ Service∧
st = x.create_service(y, z)
∧extractNode(hst (x)) = 𝑛
∧sst (y) =𝑚 ∧ sst (z) = 𝑠

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

∪ (5)

⋃
st∈p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(𝑛, 𝑠, 𝑚) : 𝑠 ∈ Service∧
st = x.create_client(y, z)
∧extractNode(hst (x)) = 𝑛
∧sst (y) =𝑚 ∧ sst (z) = 𝑠

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

∪ (6)

⋃
st∈p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(𝑛, 𝑎,𝑚) : 𝑎 ∈ Action∧
st = ActionClient.__init__(x, y, z)
∧extractNode(hst (x)) = 𝑛
∧sst (y) =𝑚 ∧ sst (z) = 𝑎

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

∪ (7)

⋃
st∈p

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

(𝑎, 𝑛,𝑚) : 𝑎 ∈ Action∧
st = ActionServer.__init__(x, y, z)
∧extractNode(hst (x)) = 𝑛
∧sst (y) =𝑚 ∧ sst (z) = 𝑎

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

. (8)

3.5.3 Running example

We now extract the ROS Computational Graph on the run-
ning example introduced in Sect. 2.1 starting from the results
of the abstract semantics discussed in Sect. 3.4.1.

First of all, the nodes extraction (Definition 9) returns the
following three nodes:

– (′talker′, ′′) through API (1) since the constructor of Node
is invoked at line 8 of Talker with string constant talker as
the name of the topic, and no namespace (that by default
is empty),

– (′listener′, ′′) through API (1) since the constructor of
Node is invoked at line 8 of Listener with string constant
listener as the name of the topic, and no namespace, and

– topic ′chatter′ through API (3) because of method call
Node.create_publisher at line 10 of Talker class, and API
rule 4 because of method call Node.create_subscription
at line 9 of Listener class.

Springer

Inference of access policies through static analysis

Therefore, the set of nodes computed on the running ex-
ample is 𝑁p = {(′talker′, ′′), (′listener′, ′′), ′chatter′}.

We then notice that the robotic node extraction function
(Definition 10) returns:

– (′talker′, ′′) when applied to (Talker,24) since method
Node.__init__ is invoked on this heap identifier at line 8
of Talker class, and

– (′listener′, ′′) when applied to (Listener,16) since method
Node.__init__ is invoked on this heap identifier at line 8
of Listener class.

Relying on these results, the following edges are extracted
through Definition 11:

– ((′talker′, ′′), ′chatter′, ′String′) because of method call
Node.create_publisher (API (3) in Table 1) at line 10 of
Talker class, and

– (′chatter′, (′listener′, ′′), ′String′) because of method call
Node.create_subscription (API (4) in Table 1) at line 9 of
Listener class,

Therefore, the edges of the ROS Computational Graph are
the following:

𝐸p =

{
((
′talker′, ′′), ′chatter′, ′String′),
(
′chatter′, (′listener′, ′′), ′String′)

}

.

These nodes and edges represent the graph in Fig. 1.
Similarly, when considering the more complex

chatter_callback function reported in Listing 8, an addi-
tional topic node ′chatter2′ is created because of API (3) of
Definition 9 because of method call Node.create_publisher
at line 4 of the aforementioned figure. Because of this method
call, an additional edge ((′listener′, ′′), ′chatter2′, ′String′)
is produced because of API (3) of Definition 11. In this way,
the graph reported in Fig. 2 is produced.

3.6 Policy extraction

As described in Sect. 2.3.1, enclaves group nodes that share
common functionalities or security requirements. However,
implementing such clustering necessitates a high-level un-
derstanding of the application, which extends beyond the
current scope of our analysis. Consequently, our approach is
conservative; it generates policies where each enclave con-
tains only a single node. This conservative strategy ensures
that each node’s permissions are precisely defined and min-
imizes the risk of inadvertent privilege escalation.

Once the ROS Computational Graph is generated, creat-
ing the access policy is straightforward: for each robotic node
in the graph, permissions are granted for interactions with all
its directly connected communication channels. It is worth
noting that although generating the policy is the ultimate ob-
jective, the primary complexity and novelty of our approach

lie in constructing the ROS Computational Graph. This dis-
tinction emphasizes that the core contribution of our work
is in leveraging LiSA’s static analysis capabilities to achieve
an exhaustive, accurate graph that represents all interactions
within a ROS 2 application. The policy generation, while
essential, is thus a straightforward derivation from this com-
puted graph. Interested readers can find the overall algorithm
in the Appendix C.

In our approach, access control policies are designed to
be minimal, meaning they adhere strictly to the Principle
of Least Privilege (PoLP) by granting only the permissions
necessary for the nodes’ specified functionalities. Minimality
ensures that each node accesses only the topics, services,
or actions required for its operation, reducing the risk of
overprivileged access that could compromise security.

4 LiSA4ROS2

In this section, we discuss LiSA4ROS2 [9, 10], our imple-
mentation of the formalization presented in Sect. 3. In par-
ticular, given a Python program using the ROS 2 library,
LiSA4ROS2:

1. First applies the static analysis formalized in Sect. 3.4;
2. Then extracts the graph as formalized in Sect. 3.5. This

step might fail because the static analysis results are not
precise enough. In such a case, LiSA4ROS2 fails on the
given program;

3. Finally, extracts the access policy as formalized in
Sect. 3.6.

This section is structured as follows: first, we introduce the
Library for Static Analysis (LiSA), which serves as the foun-
dation for our analysis. Then, we present the architecture of
LiSA4ROS2, detailing our approach to analyzing the rclpy
library.

4.1 Library for Static Analysis (LiSA)

In this subsection, we introduce the Library for Static Analy-
sis (LiSA) [11, 19],9 the foundation that allows us to develop
a customized, sound, and efficient analysis for ROS 2 appli-
cations. LiSA is a Java library that helps developers build
sound static analyzers with ease. LiSA uses abstract inter-
pretation [18] to reason about programs.

Similar to other static analysis tools such as MOPSA [20,
21], Infer [22], and Ikos [23], LiSA is built to analyze multi-
ple programming languages using a unified analysis engine.
At its core, LiSA employs a language-agnostic intermediate
representation (IR) of programs [24]. This allows it to sup-
port a variety of languages through dedicated front-ends for

9 https://github.com/lisa-analyzer/lisa.

Springer

https://github.com/lisa-analyzer/lisa

G. Zanatta et al.

Fig. 4 LiSA architecture

Python, Rust, and Golang.10 Being an open-source project,
LiSA also supports custom front-ends, enabling developers
to extend its capabilities to additional languages that are not
officially supported.

LiSA’s extensibility allows for enhanced precision in anal-
ysis by enabling the development of specialized domains tai-
lored to specific application needs. Figure 4 illustrates the
architecture of the LiSA library. The process begins with
a program P written in a language L, which is transformed
into an LiSA Program via a language-specific front-end. This
LiSA Program comprises Control-Flow Graphs (CFGs) for
each method encountered in the source code.

Each LiSA CFG models the flow of instructions within
a method or function. These instructions are represented
internally as LiSA Statements, which are generated by the
front-end through parsing the source code. Each LiSA State-
ment encapsulates a specific operation or expression from
the source code. The LiSA engine processes the LiSA Pro-
gram, evaluating the program’s behavior starting from the
entry point using an interprocedural analysis approach. This
analysis involves computing the fixpoint of a CFG based on
the semantics of LiSA Statements.

LiSA’s Abstract State framework, grounded in [25], mod-
els the program’s memory through an abstract value do-
main (which tracks variable values) and an abstract heap
domain (which monitors dynamic memory changes). De-
velopers can leverage predefined abstract domains, such as
those for constant propagation, shape analysis [26], or taint
analysis [27, 28], or create custom domains to suit specific
needs. To extract meaningful insights, such as warnings or
code smells, users can employ checkers that iterate over the
program’s semantics to produce actionable results.

4.2 LiSA4ROS2 architecture

Figure 5 presents the architecture of LiSA4ROS2, illustrat-
ing the process flow. The tool ingests a set of ROS 2 Python

10 All official front-ends are available here: https://github.com/orgs/
lisa-analyzer.

Fig. 5 LiSA4ROS2 architecture

source files into pyLiSA, the Python front-end for LiSA,
which generates a corresponding set of LiSA programs. Each
LiSA program consists of Control-Flow Graphs (CFGs).
LiSA processes these CFGs by computing the semantics of
the encountered statements, with special emphasis on calls
to the rclpy library that we further discuss in Sect. 4.3. As
mentioned earlier, we use a field-sensitive, point-based heap
abstraction model combined with constant propagation to
track the instantiation of nodes and the associated entity
names.

Once the analysis is complete, we iterate semantically
over all ROS 2-related statements to reconstruct the archi-
tecture of each node, leveraging the information retained in
the abstract state. This process is repeated for every LiSA
program, after which the collected information is consoli-
dated into a shared object representing the communication
graph. Once the network is constructed, we generate Access
Control Policies by translating each node object in the net-
work into an intermediate Java object that contains JAXB11

annotations. These annotations facilitate mapping the POJO
(Plain Old Java Object) to XML documents based on the
SROS2 permission schema defined in the XSD file.

The generated SROS2 permissions must then be processed
by the SROS2 CLI to produce the appropriate middleware-
specific permissions. For better clarity and visualization, the
tool exports the network data, including access control poli-
cies and other relevant statistics,12 into an HTML file.

Currently, the tool is in its prototype stage and can analyze
only Python files. However, the analysis can be extended to
C++ sources.13

11 https://javaee.github.io/jaxb-v2/.
12 Examples include lines of code, the number of nodes, topics, pub-
lishers per node, and global publisher counts.
13 The complexity of analyzing applications built on the C++ ROS 2
library stems from the absence of a C++ front-end for LiSA. Building
a front-end for any language is a labor-intensive and time-consuming
process, which we have deferred as future work.

Springer

https://github.com/orgs/lisa-analyzer
https://github.com/orgs/lisa-analyzer
https://javaee.github.io/jaxb-v2/

Inference of access policies through static analysis

Listing 12 SARL specification for the
rclpy.node.Node.create_publisher method

4.3 rclpy semantics

As introduced in Sect. 2.2, the rclpy library serves as a Python
wrapper around a C library. Internally, rclpy utilizes opti-
mized code and specific C bindings that are challenging to
analyze statically. Since our analysis is based solely on the
application code, we lack access to the internal semantics
of the rclpy library during the analysis phase, making a di-
rect interprocedural analysis infeasible. To address this, we
model the semantics of such libraries within LiSA by defin-
ing them as custom statements. This is accomplished using
LiSA’s Static Analysis Rule Language (SARL). We begin by
specifying rules in a dedicated file that guides the analysis on
how to interpret specific calls to rclpy. For illustration, List-
ing 12 provides a snippet written in SARL, demonstrating
how these rules are articulated.

The SARL specification is parsed before the seman-
tics computation begins. This snippet registers a class
unit named rclpy.node.Node with an instance method
create_publisher in the program under analysis. In LiSA,
class units represent classes, while instance code members
model method calls. Rather than extracting method seman-
tics directly from the source code, SARL allows us to define
the method’s behavior programmatically using LiSA’s state-
ments.

In the snippet above, line 4 specifies that the seman-
tics of the rclpy.node.Node.create_publisher in-
stance method is defined in the Java class it.unive
.pylisa.libraries.rclpy.node.CreatePublisher.
The SARL snippet also outlines the method’s signature, in-
cluding the return value (line 5) and the number and types of
arguments (lines 6–9). Specifically, the method being mod-
eled returns an rclpy.publisher.Publisher*, where the
asterisk indicates a pointer to an object in the heap. The
libtype keyword signifies that the object’s definition is
provided using SARL.

The first parameter of the method is the object on which
the method is called, with type rclpy.node.Node. The re-
maining three parameters include the message type (mod-
eled as a String), the topic name (also a String), and the
qos_profile, which does not have a defined type. Mod-
eling the message type as a String simplifies the analysis

Listing 13 Semantics of the rclpy.node.Node.
create_publisher method

by focusing only on the type’s name rather than the com-
plex class structure in ROS 2. The qos_profile parameter,
which defines the quality of service for the publisher, is set
to an undefined type. This is acceptable since Python is un-
typed, and SARL does not support defining a parameter with
multiple types.

LiSA processes the SARL specification to create a Class
Unit for each class and a Code Unit for each method within
those classes. During LiSA’s interprocedural analysis, these
units are used to resolve method calls by linking them to
their defined semantics. Whenever the analysis encounters
an unresolved method call, it queries all Code Units in the
program to find a matching method signature. For the specific
example at hand, when a method call on a Node object is
encountered, LiSA searches the rclpy.node.Node unit for
a matching Code Member. If a match is found, the call is
registered in the Call Graph, and its semantics are computed
based on the definition provided in the SARL, as illustrated
in Listing 13.

The create_publishermethod will instantiate a ROS 2
publisher in memory. In our analysis, this is modeled within
the Abstract State by creating an object in the Heap Domain,
accomplished through the appropriate semantics defined in
the PyNewObj class.

Springer

G. Zanatta et al.

Listing 14 Topic name expansion

To create a publisher, we first need to expand its name (line
9). In ROS 2, the topic name is prefixed by the namespace
of the node that defines it, if present. We replace the origi-
nal name with the expanded name (parameter params[2]).
Next, we retrieve the message type. For our purposes, we
track only the name of the message classes, so we define a
constant, and we assign it the string value of the message
type (lines 12–13) and override the message type param-
eter accordingly. On line 18, we create a new Publisher
using PyNewObj, passing all modified parameters of the
create_publisher method except self.

For the expanded name, we replace the actual topic name
with an expression. We model name expansion as an oper-
ation that takes three arguments (the topic name, the node
name, and the namespace of the node) and produces the
expanded name. The actual expansion is computed in the
Constant Propagation domain (Listing 14). The process is
straightforward: we simulate how ROS 2 performs name ex-
pansion by manipulating the string values of parameters.
First, we remove the prefix rostopic:// from the name if
present. Then, we ensure that the namespace starts with a /.
Next, we prepend the node’s namespace to the topic name if
the topic name is not absolute (i.e., it does not start with a
/), and then we replace wildcards as follows:

– If the topic name contains {namespace} or {ns}, we re-
place it with the namespace.

– If the topic name contains {node}, we replace it with the
node name.

5 Evaluation

To evaluate LiSA4ROS2, we created a dataset in Novem-
ber 2023 consisting of 682 GitHub repositories containing
Python ROS 2 source code. This dataset is open source and
can be accessed at https://zenodo.org/records/10817418.

From these repositories, we extracted all Python files that
utilize the rclpy library and include calls related to rclpy
for instantiating ROS 2 nodes. This filtering process yielded
5936 files. We processed these files using the Python front-
end for LiSA, which successfully parsed 5552 files (93.53%),
while 384 files (6.47%) encountered parsing errors.14

The parsed files were then analyzed through LiSA’s inter-
procedural analysis to compute the semantics of the state-
ments. LiSA was able to process 92.6% of these files (5141),
while 7.4% (411) did not reach a fixpoint. Of the successfully
processed files, meaningful results were obtained for 3406
files (66%). The remaining 1735 files (34%) presented cases
where the analysis failed to compute precise names. Upon in-
vestigation, we found that these source entities’ names were
defined in external configuration files, which are not cur-
rently analyzed by our tool, but are a potential area for future
work.

Table 2 presents some results of our analysis. In particu-
lar, from the complete set of analyzed examples, we selected
those with notable features or complexities. The first four
rows relate to the official ROS 2 examples,15 which are min-
imal and demonstrate various ways to define ROS 2 nodes
using the rclpy library. Our analysis successfully extracted
all entities from the source code and produced valid policy
files. The remaining rows represent a set of realistic Python
ROS 2 applications with relatively complex ROS Computa-
tional Graphs that LiSA4ROS2 effectively analyzed. A no-
table example is the virtuoso repository, which exemplifies
the potential scale and complexity of ROS 2 systems. This
repository includes 52 nodes interconnected through a highly
complex graph comprising 95 topics, 132 publishers, and 83
subscriptions. The ability to analyze such a vast and intricate
network underscores the significance of a static analysis ap-
proach such as the one we propose with LiSA4ROS2. A run-
time inspection would have required initiating and inspect-
ing all 52 nodes to extract this information. Instead, with
LiSA4ROS2, we can automatically have a comprehensive

14 Details about these errors are available in the LiSA4ROS2 reposi-
tory, under the analysis folder.
15 https://github.com/ros2/examples.

Springer

https://zenodo.org/records/10817418
https://github.com/ros2/examples

Inference of access policies through static analysis

Table 2 Metrics of selected examples

PROJECT LOC N T S A PUB SUB SS SC AS AC

pubsub_minimal 44 2 4 (3) 14 (14) 0 7 (6) 3 (2) 14 (14) 0 0 0
pubsub_min_oldschool 38 2 4 (3) 14 (14) 0 7 (6) 3 (2) 14 (14) 0 0 0
services_minimal 41 2 3 (3) 15 (14) 0 6 (6) 2 (2) 15 (14) 1 0 0
actions_minimal 101 2 3 (3) 14 (14) 1 6 (6) 2 (2) 14 (14) 0 1 1
mechaship 849 5 8 (3) 38 (35) 0 18 (15) 13 (5) 35 (35) 3 0 0
solar-ros 243 6 4 (3) 44 (42) 0 19 (18) 7 (6) 44 (42) 3 0 0
ROS-LLM 302 4 9 (3) 30 (28) 0 19 (12) 6 (4) 30 (28) 1 0 0
Catch2023_hichewns 1000 8 30 (3) 56 (56) 0 52 (24) 34 (8) 56 (56) 0 0 0
fruit_collectors 220 2 6 (3) 15 (14) 0 8 (6) 5 (2) 15 (14) 1 0 0
spatial-teleoperation 166 2 10 (3) 14 (14) 0 11 (6) 5 (2) 14 (14) 0 0 0
ProjectMarch 511 5 13 (3) 37 (35) 1 25 (15) 9 (5) 38 (35) 0 0 1
5g_drone_ROS2 882 6 12 (3) 53 (42) 0 20 (18) 15 (6) 45 (42) 11 0 0
Virtuoso 3840 52 98 (3) 378 (364) 1 288 (156) 135 (52) 371 (364) 11 0 1
eml4842_gps_nav 543 7 12 (3) 50 (49) 0 28 (21) 15 (7) 50 (49) 2 0 0
MARV-ROS 1036 7 51 (3) 49 (49) 0 59 (21) 42 (7) 49 (49) 0 0 0
module89 1947 15 28 (3) 113 (105) 0 71 (45) 33 (15) 111 (105) 7 0 0
zumopi_tel_system 1451 5 22 (3) 35 (35) 0 35 (15) 34 (5) 35 (35) 0 0 0

Lines Of Code (LOC), Numbers of Nodes (N), Topics (T), Services (S), Actions (A), Publishers (PUB), Subscribers (SUB), Service Servers (SS),
Service Clients (SC), Action Servers (AS), Action Clients (AC). The value inside the parentheses represents system entities

Table 3 LiSA4ROS2 execution
time for the selected examples PROJECT Parsing time (ms) Analysis time (ms) Total time (ms)

pubsub_minimal 1369 263 2291
pubsub_min_oldschool 1380 284 2344
services_minimal 1575 304 2608
actions_minimal 1848 319 2910
mechaship 2057 1822 4587
solar-ros 1596 666 2976
ROS-LLM 1758 849 3467
Catch2023_hichewns 2804 3745 7710
fruit_collectors 1379 1253 3374
spatial-teleoperation 1494 501 2745
ProjectMarch 2131 1402 4394
5g_drone_ROS2 1947 971 3607
Virtuoso 9675 5946 16,585
eml4842_gps_nav 2156 1186 4212
MARV-ROS 2460 2059 5302
module89 4004 5392 10,199
zumopi_tel_system 2923 3134 6836

view of the entire system’s communication and interaction

patterns. This capability is particularly crucial for such large-

scale systems where dynamic inspection would inevitably be

time-consuming and resource-intensive. With this approach,

we enable more efficient policy generation and security anal-

ysis, contributing to robust and scalable ROS 2 application
development and deployment.

All the analyses was performed using a 2019 MacBook
Pro 16, with a 32 GB 2667 MHz DDR4 RAM, and a 2.6 GHz
Intel Core i7 6 core processor. Table 3 shows the execution
time (in milliseconds) for each analysis. The second col-

Springer

G. Zanatta et al.

umn details the time taken by the analyzer to parse all node
sources, process the SARL file, and generate the correspond-
ing LiSA program for each node. The third column indicates
the time spent during the analysis phase, including network
extraction. The last column displays the total time, encom-
passing both parsing and analysis times, along with a small
overhead for generating HTML output from a predefined
template. Parsing time is influenced by (i) the lines of code
and (ii) the number of sources, while analysis time depends
on (i) the number of rclpy calls in each node and (ii) the com-
plexity of semantic computations (e.g., loops require more
processing than simple statements). For the Virtuoso project,
LiSA4ROS2 required a total of 16.585 seconds to complete
the analysis. This included 9.675 seconds spent in the parsing
phase and 5.946 seconds in the analysis phase.

6 Related work

To the best of our knowledge, no existing tools currently ad-
dress the specific task we aim to undertake with LiSA4ROS2.
While analogous work can be found in the literature, these
approaches are typically applied in different domains and
contexts. For example, in [29], the authors used static analysis
to extract database interactions in web applications automat-
ically. Similar to LiSA, their approach involved constructing
a Control Flow Graph (CFG), but in a more simplified form
known as an Interaction Flow Graph (IFG). However, our
method is more comprehensive, as their analysis focuses
solely on database interactions, whereas LiSA4ROS2 tracks
communications via the publish-subscribe pattern used in
ROS 2.

Our objectives more closely resemble those in [30], where
statically extracted authorization graphs were employed in
web applications to enforce Role-Based Access Control
(RBAC) on resources. They used these graphs to identify vul-
nerabilities, validate policies, re-document policies, conduct
role mining, and simplify authorization data. Similarly, we
aim to achieve comparable outcomes, but within the complex
multitiered architecture of robotic systems, where multiple
nodes access resources through publish–subscribe mecha-
nisms spanning various domains. Although prior work has
applied static analysis to ROS, it differs from our specific
goals. In ROS 1, notable efforts include HAROS [31] and
the related analyses found in [32], but it is important to note
that these tools do not support ROS 2, and there is no indi-
cation that such support is forthcoming [33].

In the context of ROS 2, [34] focused on formally verify-
ing the Data Distribution Service (DDS) component in ROS
2, providing an abstraction and formalization of DDS based
on probabilistic timed automata. Their objective was to ver-
ify properties like security (no deadlock), liveness (ensuring
a node can reach send_wait), and priority (higher-priority

nodes sending data first). Although their formal verification
is insightful, it differs significantly from the context and goals
of our research. Other approaches have concentrated on Run-
time Verification (RV), where developers can validate the
behavior of safety-critical systems that are too complex for
formal verification. However, creating RV monitors is chal-
lenging, and errors in these monitors could jeopardize the
entire system. The authors in [35] present a formal approach
for generating runtime monitors for ROS 2 applications us-
ing the Formal Requirement Elicitation Tool (FRET) and
the Ogma integration tool. Their focus, however, is on in-
corporating ROS 2 packages into larger systems, which falls
outside the scope of our work.

Several RV efforts are worth mentioning, but they sup-
port only ROS 1 and lack compatibility with ROS 2. These
include (i) ROSRV [36], with safety and security properties
to be defined in a formal specification language and verified
via automatically generated monitors, (ii) ROSMonitoring
[37], which supports multiple ROS distributions and is ag-
nostic to the specification formalism, and (iii) DeRoS [38],
a domain-specific language and monitoring system designed
specifically for ROS 1. Our approach, focused on enumer-
ating ROS Computational Graph resources, seeks to refine
the modeling phase described in the SROS2 paper [7]. De-
velopers can inspect the graph using ROS 2 API command
line tools or by employing scapy to dissect and decode DDS
network packets [39]. Additionally, we can leverage recent
improvements from [40], which extended ros2_tracing
for real-time tracing of ROS 2 messages. Although origi-
nally intended to uncover causal links between input/output
messages and indirect causal paths, incorporating this tool
into our modeling analysis offers a valuable supplemental
component.

However, despite the utility of these methods, they can
explore only a limited subset of potential execution paths.
Constrained by test execution conditions, such as specific
input values and configurations, this limitation risks leaving
parts of the system unexamined, which may result in mis-
configured access policies. Consequently, hidden resources
or malicious elements might persist undetected due to overly
permissive rules [41].

Moreover, the Open Source Robotics Foundation (OSRF)
developed a tool to translate the Node Interface Definition
Language (NoDL) description of an ROS system into SROS2
policy [42]. However, as of this writing, development has
stalled due to various issues with the definition and adoption
of NoDL in ROS 2 [43].

7 Future work

Current limitations restrict LiSA4ROS2’s ability to fully an-
alyze ROS packages that use dynamic configurations, such

Springer

Inference of access policies through static analysis

as external files for namespace remapping, or that distribute
node instantiation across multiple source files. Expanding
LiSA4ROS2’s compatibility with diverse ROS 2 project lay-
outs could significantly broaden its applicability and integra-
tion within the ROS 2 ecosystem.

A particularly promising area for enhancement involves
supporting transitive analysis of ROS 2 launch files, which
now often use Python-like syntax or static markup languages
like XML and YAML. Launch files are essential in managing
complex ROS 2 applications, allowing for dynamic config-
urations that influence runtime behavior. By incorporating
launch file analysis, LiSA4ROS2 could better capture com-
munication structures defined at launch, thereby enhancing
the precision of generated security policies and adapting
them to reflect the actual deployment settings.

Another planned extension is support for ROS 2 ap-
plications written in C++ through the development of an
LLVM-based front end for LiSA. This addition would allow
LiSA4ROS2 to process code written with the rclcpp library,
opening up its analysis capabilities to a broader range of ROS
2 projects. Furthermore, we aim to implement Information
Flow Analysis to detect and manage the declassification of
private messages automatically. This feature would enable
LiSA4ROS2 to help safeguard sensitive data flows across
ROS 2 applications, reinforcing its role as a tool for secure
and accurate policy generation.

In addition, future work could involve a comparative eval-
uation between LiSA4ROS2’s static analysis approach and
existing dynamic techniques used in ROS 2. A comparison
with dynamic techniques would allow us to quantify the ben-
efits and trade-offs in terms of completeness, coverage, and
accuracy. This would be especially relevant to understanding
how LiSA4ROS2’s static overapproximation compares with
the typically more scenario-bound insights obtained through
dynamic analysis, providing insights into the strengths of
each approach and identifying areas for potential hybridiza-
tion.

8 Conclusions

In this paper, we discussed LiSA4ROS2, an innovative tool
designed to automate the extraction of ROS Computational
Graphs through static analysis. We explored the application
of formal methods to illustrate how static analysis can effec-
tively address potential errors resulting from improper pol-
icy configurations and manage the complexities of manually
crafting accurate and maintaining security policies.

Our empirical assessment of LiSA4ROS2 demonstrated
its capability to handle both simple and complex deploy-
ments using real-world codebases. This evaluation highlights
the tool’s practical utility and its potential to streamline the
establishment of security policies in ROS 2 environments.

We also provided a critical examination of the current
version’s limitations and identified several promising av-
enues for future research and development. In particular,
research on the determination of similarities between poli-
cies for shared enclaves represents a significant opportunity
for advancement. This enhancement could involve analyzing
node interactions to identify patterns or similarities that jus-
tify grouping nodes based on their roles and security needs
in highly distributed deployments. By implementing such
techniques, we could develop more efficient and manageable
policies, offering a nuanced understanding of the applica-
tion’s structure and security requirements. This would not
only streamline policy management but also improve the
scalability and adaptability of security frameworks in com-
plex systems.

Overall, this work contributes to a comprehensive under-
standing of LiSA4ROS2’s current capabilities and highlights
various opportunities for future enhancements. These ad-
vancements could further refine the tool and extend its appli-
cability, ultimately contributing to more robust and adaptable
security solutions in the field of software architecture.

Appendix A: DDS permissions

The policies generated by LiSA4ROS2, in conjunction with
the SROS2 toolchain, are middleware-agnostic, meaning
they are abstracted from the specifics of the underlying mid-
dleware. When generating security artifacts, SROS2 trans-
lates these policies into a format that the middleware in use
can interpret. The default middleware in ROS 2 is Prosima
Fast DDS, a widely adopted DDS (Data Distribution Ser-
vice) implementation. As SROS2 does not currently support
policy generation for non-DDS middleware, and at the time
of writing, only DDS-based middleware is officially sup-
ported in ROS 2,16 we provide in this appendix the DDS-
compliant XML policy generated by SROS2 for the running
example discussed in Sect. 3.5.3.

A.1 Mapping ROS 2 entities to DDS entities

ROS 2 entities are abstractions mapped to corresponding
DDS entities at the middleware level. Specifically, an ROS
2 node is referred to as a participant within the DDS
ecosystem. Since DDS operates exclusively through the Pub-
lish/Subscribe (Pub/Sub) communication pattern, services
and actions in ROS 2 must be translated into publishers
and subscribers at the DDS layer. For instance, an ROS
2 service server named srv is implemented using a sub-
scriber (to handle incoming connections) on the DDS topic

16 https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-
Different-Middleware-Vendors.html.

Springer

https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/jazzy/Concepts/Intermediate/About-Different-Middleware-Vendors.html

G. Zanatta et al.

/rr/srvRequest and a publisher (to send the result back to
the client) on the DDS topic /rq/srvReply (we will clarify
the /rq and /rr prefixes shortly). A node that intends to use
this service creates a service client in ROS 2, which is repre-
sented at the DDS level by a publisher on /rr/srvRequest
(to send the request) and a subscriber on /rq/srvReply
(to receive the response). In the case of actions, these are
modeled through a combination of services and topics.

To distinguish ROS 2 entities at the DDS level, all DDS
topics generated by ROS 2 are automatically prefixed with a
namespace that identifies the type of ROS 2 entity using the
topic. For example, the /rt prefix is used to denote a stan-
dard ROS 2 topic. Thus, an ROS 2 topic named /chatter
is mapped to the DDS topic /rt/chatter. Similarly, the
prefixes /rq and /rr are used for services, corresponding to
the Request and Response topics, respectively.

A.2 DDS policy generated by SROS2 during artifact
creation

The example SROS2 policy generated for the listener enclave
is shown in Listing 15.

As shown, this policy allows connections to all topics (via
the rt/* rule), making it insecure. The other topics refer to
system entities, which are further explained in Appendix B.

A.3 Minimal DDS policies generated by SROS2
starting from the LiSA4ROS2 policy

Listing 16 presents the DDS policy generated by executing
the following command:

1 rosdev@testbed:~/ros2_ws$ ros2 security
generate_artifacts -k keystore -p policy.xml

In this case, policy.xml is the ROS 2 policy generated
by LiSA4ROS for the listener node (see Listing 18 for the
complete version).17 This policy is minimal: it avoids the use
of wildcards (*) and includes all the necessary publishers and
subscriptions for ROS 2 system services and topics, as well
as the publisher to the /chatter2 topic and the subscription
to the /chatter topic.

Appendix B: ROS 2 internal topics and services

Under the hood, ROS 2 nodes utilize internal topics and ser-
vices. These system-level resources enable an ROS 2 node to
connect to the underlying network and allow external entities
to manage its behavior by adjusting its internal parameters.
A ROS 2 node leverages the following internal resources:

17 Note that the ros_discovery_info permissions are listed sepa-
rately from the others. This is how SROS2 extracts the permissions;
however, combining them with the others does not pose any issues.

Listing 15 DDS dummy policy generated by SROS2

– Service ~/describe_parameters provides detailed
information about one or more parameters, such as their
types and descriptions.

– Service ~/get_parameter_types returns the types of
specific parameters.

– Service ~/get_parameters retrieves the current val-
ues of specific parameters.

– Service ~/list_parameters lists all available param-
eters of the node.

– Service ~/set_parameters allows changing the val-
ues of one or more parameters.

– Service ~/set_parameters_atomically similar to
set_parameters, but ensures that all parameter changes
are applied at once.

Springer

Inference of access policies through static analysis

Listing 16 DDS policy
computed on the running
example, using SROS2 with the
LiSA4ROS2 generated policy

– Publisher to parameter_events tracks parameter
changes.

– Publisher to rosout is used for logging and debugging
purposes.

It is important to note that these services are node-specific
(indicated by the ~prefix), while parameter_events,
rosout, and ros_discovery_info are topics shared
across all nodes. There is also a special topic called
ros_discovery_info, which is hidden at the ROS 2 level
and does not appear during dynamic network inspections
using SROS2. Nodes use this topic to notify the underlying
system of their presence and status within the network.

In Sect. 3.5.3, we have omitted internal topics and ser-
vices for the sake of brevity and clarity. However, these are
included in the policy generated by SROS2. The complete
policy extracted by SROS2 is presented in Listing 17.

Since the names of these system-related entities are con-
stants, LiSA4ROS2 includes these services and publishers in
the generated policy. For completeness, Listing 18 displays
the policy for the listener node in the running example, in-
cluding the publisher to chatter2. Rather than using the
private prefix ~, LiSA4ROS2 performs the expansion by re-
placing ~ with /{namespace}/{nodename}, as explained
in Sect. 4.3.

Springer

G. Zanatta et al.

Listing 17 Complete policy
generated by SROS security tool
for the Listener node

Listing 18 Complete policy
generated by LiSA4ROS2 for
the Listener node

Appendix C: Extracting policy from a graph

Algorithm 1 reports a simplified version of the algorithm
that LiSA4ROS2 uses to extract a policy from an ROS Com-
putational Graph. While LiSA4ROS2 produces one policy
file per node, the algorithm presented here produces one sin-
gle policy file for all the ROS Computational Graph, with
one node per enclave. We decided to present the algorithm
in this way to simplify the explanation. This algorithm re-
ceives a graph derived from a program p represented by
𝑁p, 𝐸p. The beginning and end of the algorithm (lines 1–4
and 43–44) declare some standard tags of the XML access
policy. The algorithm then iterates on all the robotic nodes
(lines 5–42). For each node, it opens (lines 6–8) and closes
(lines 39–41) the required tags for enclaves and policies.

Then, for each different type of communication channel, the
corresponding tags are added. In particular, for topic pub-

lishers, it adds a node topics where publish is allowed
(opened at line 9 and closed at line 13). It then iterates over

all the edges representing topic publishers (that are therefore
in RobNode × Topic × ET as specified in Definition 8) and
that refers to the current robotic node (by intersecting all the

edges with {(𝑛, 𝑛𝑠)} × Topic×ET). For each edge, it simply
adds a topic node with the topic name (line 11). The same

process is applied to topic subscribers (lines 14–18), service
clients (lines 19–23), service servers (lines 24–28), action

clients (lines 29–33), and action servers (lines 34–38).

Springer

Inference of access policies through static analysis

Algorithm 1 The algorithm that extracts the policy from
the graph, where 𝑁p, 𝐸p represents the ROS Computational
Graph produced on program p
1: print <?xml version="1.0" encoding="UTF-8"
2: print standalone="yes"?>
3: print <policy version="0.2.0">
4: print <enclaves>
5: for all (𝑛, 𝑛𝑠) ∈ 𝑁p ∩RobNode do
6: print <enclave>
7: print <profiles>
8: print <profile ns="𝑛𝑠" node=𝑛>

{Topic publisher}
9: print <topics publish="ALLOW">
10: for all ((𝑛, 𝑛𝑠) , 𝑡 , 𝑒𝑡) ∈ 𝑁p ∩ ({ (𝑛, 𝑛𝑠) } × Topic × ET) do
11: print <topic> 𝑡 </topic>
12: end for
13: print </topics>

{Topic subscribers}
14: print <topics subscribe="ALLOW">
15: for all (𝑡 , (𝑛, 𝑛𝑠) , 𝑒𝑡) ∈ 𝑁p ∩ (Topic × { (𝑛, 𝑛𝑠) } × ET) do
16: print <topic> 𝑡 </topic>
17: end for
18: print </topics>

{Service clients}
19: print <services request="ALLOW">
20: for all ((𝑛, 𝑛𝑠) , 𝑠, 𝑒𝑡) ∈ 𝑁p ∩ ({ (𝑛, 𝑛𝑠) } × Service × ET) do
21: print <service> 𝑠 </service>
22: end for
23: print </services>

{Service servers}
24: print <services reply="ALLOW">
25: for all (𝑠, (𝑛, 𝑛𝑠) , 𝑒𝑡) ∈ 𝑁p ∩ (Service × { (𝑛, 𝑛𝑠) } × ET) do
26: print <service> 𝑠 </service>
27: end for
28: print </services>

{Action clients}
29: print <actions call="ALLOW">
30: for all ((𝑛, 𝑛𝑠) , 𝑠, 𝑒𝑡) ∈ 𝑁p ∩ ({ (𝑛, 𝑛𝑠) } × Action × ET) do
31: print <action> 𝑎 </action>
32: end for
33: print </actions>

{Action servers}
34: print <actions execute="ALLOW">
35: for all (𝑎, (𝑛, 𝑛𝑠) , 𝑒𝑡) ∈ 𝑁p ∩ (Action × { (𝑛, 𝑛𝑠) } × ET) do
36: print <action 𝑎 </action>
37: end for
38: print </actions>

39: print </enclave>
40: print </profiles>
41: print </profile>
42: end for
43: print </enclaves>
44: print </policy>

C.1 Running example

We now apply Algorithm 1 on the running example intro-
duced in Sect. 2.1. In particular, we apply this algorithm to
the results computed in Sect. 3.5.3. Omitting the tags about
services and actions (that are empty since no service or ac-
tion is involved in the example), we obtain the policy reported
in Listing 19. In particular, the opening and closing of the
outer XML tags (lines 1–3 and 22–23 of the policy) corre-

Listing 19 Access policy computed on the running example

spond to lines 1–4 and 43–44 of the algorithm. The graph
then contains two nodes. Therefore, the print statements at
lines 6–8 and 39–41 of the algorithm produce lines 4–6 and
10–12 for Talker, and lines 13–15 and 19–21 for Listener
in the policy. Finally, the algorithm (lines 9–13) allows the
Talker to publish on topic chatter (lines 7–9 of the policy),
and also (lines 14–18 of the algorithm) the Listener to listen
to the same topic (lines 16–18 of the policy).

Intuitively, this policy corresponds to the union of the
policies in Listing 5 and 6.

Instead, when considering the more complex code in List-
ing 8, inside the profile of the Listener the following addi-
tional publisher is produced:

Funding This work was partially supported by SERICS (PE000000
14 – CUP H73C2200089001) under the NRRP MUR program funded
by the EU – NGEU, and by iNEST – Interconnected NordEst Inno-
vation Ecosystem funded by PNRR (Mission 4.2, Investment 49 1.5)
NextGeneration EU (ECS_00000043 – CUP H43C22000540006).

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted mate-
rial derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative Com-
mons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or ex-
ceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Springer

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

G. Zanatta et al.

References

1. Kirschgens, L.A., Ugarte, I.Z., Gil-Uriarte, E., Rosas, A.M.,
Vilches, V.M.: Robot hazards: from safety to security. CoRR
(2018). arXiv:1806.06681

2. Caiazza, G., White, R., Cortesi, A.: Enhancing Security in ROS,
pp. 3–15. Springer, Singapore (2019)

3. Mayoral-Vilches, V.: Robot cybersecurity, a review. Int. J. Cyber
Forensics Adv. Threat Invest. 0(0) (2022)

4. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., Ng, A.Y., et al.: ROS: an open-source robot operating
system. In: ICRA Workshop on Open Source Software, vol. 3.2,
p. 5. Kobe, Japan (2009)

5. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.:
Robot operating system 2: design, architecture, and uses in the
wild. Sci. Robot. 7(66), eabm6074 (2022)

6. Mayoral-Vilches, V.: Robot cybersecurity, a review. Int. J. Cyber
Forensics Adv. Threat Invest. (2022)

7. Mayoral-Vilches, V., White, R., Caiazza, G., Arguedas, M.:
SROS2: usable cyber security tools for ROS 2. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pp. 11253–11259 (2022)

8. ROS2 core team: 2023-09 ROS 2 RMW alternate. https://
discourse.ros.org/t/ros-2-alternative-middleware-report/33771

9. Zanatta, G., Caiazza, G., Ferrara, P., Negrini, L., White, R.: Au-
tomating ROS 2 security policies extraction through static analysis.
In: Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (2024)

10. Zanatta, G., Ferrara, P., Lisovenko, T., Negrini, L., Caiazza, G.,
White, R.: Sound static analysis for microservices: utopia? A pre-
liminary experience with LiSA. In: Proceedings of the 26th ACM
International Workshop on Formal Techniques for Java-Like Pro-
grams, FTfJP 2024, pp. 5–10. Association for Computing Machin-
ery, New York (2024)

11. Negrini, L., Ferrara, P., Arceri, V., Cortesi, A.: LiSA: A Generic
Framework for Multilanguage Static Analysis, pp. 19–42. Springer,
Singapore (2023)

12. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for
dummies: experiencing LiSA. In: Proceedings of the 10th ACM
SIGPLAN International Workshop on the State of the Art in Pro-
gram Analysis, SOAP 2021, pp. 1–6. Association for Computing
Machinery, New York (2021)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints. In: 4th ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January
1977, pp. 238–252. ACM (1977)

14. Cousot, P., Cousot, R.: Systematic design of program analysis
frameworks. In: 6th Annual ACM Symposium on Principles of
Programming Languages, San Antonio, Texas, USA, January 1979,
pp. 269–282. ACM Press (1979)

15. Wegman, M.N., Zadeck, F.K.: Constant propagation with condi-
tional branches. ACM Trans. Program. Lang. Syst. 13(2), 181–210
(1991)

16. Andersen, L.O.: Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of Copen-
hagen (1994)

17. Ferrara, P.: Generic combination of heap and value analyses in
abstract interpretation. In: Proceedings of VMCAI’14. LNCS.
Springer, Berlin (2014)

18. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cam-
bridge (2021)

19. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for
dummies: experiencing LiSA. In: Proceedings of the 10th ACM
SIGPLAN International Workshop on the State of the Art in Pro-
gram Analysis (SOAP 2021), SOAP 2021, pp. 1–6. ACM Press
(2021)

20. Monat, R., Ouadjaout, A., Miné, A.: Static type analysis by abstract
interpretation of Python programs. In: Proc. of the 34th European
Conference on Object-Oriented Programming (ECOOP’20). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 166,
pp. 17:1–17:29 (2020). Dagstuhl Publishing. http://www-apr.lip6.
fr/~mine/publi/article-monat-al-ecoop20.pdf

21. Ouadjaout, A., Miné, A.: A library modeling language for the
static analysis of C programs. In: Proc. of the 27th International
Static Analysis Symposium (SAS’20). Lecture Notes in Computer
Science (LNCS), vol. 12389, pp. 223–246. Springer, Berlin (2020).
http://www-apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf

22. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling
static analyses at Facebook. Commun. ACM 62(8), 62–70 (2019)

23. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: a framework for
static analysis based on abstract interpretation. In: Proceedings,
vol. 12, Software Engineering and Formal Methods: 12th Interna-
tional Conference, SEFM 2014, Grenoble, France, September 1–5,
2014, pp. 271–277. Springer (2014)

24. Zhang, B., Chen, W., Chiu, H.-C., Zhang, C.: Unveiling the power
of intermediate representations for static analysis: a survey (2024)

25. Ferrara, P.: Generic combination of heap and value analyses in
abstract interpretation. In: McMillan, K.L., Rival, X. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation, pp. 302–321.
Springer, Berlin (2014)

26. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via
3-valued logic. In: Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL 1999), pp. 105–118. ACM Press (1999)

27. Ernst, M.D., Lovato, A., Macedonio, D., Spiridon, C., Spoto, F.:
Boolean formulas for the static identification of injection attacks in
Java. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
Proceedings of Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2015), pp. 130–145. Springer, Berlin (2015)

28. Spoto, F., Burato, E., Ernst, M.D., Ferrara, P., Lovato, A., Mace-
donio, D., Spiridon, C.: Static identification of injection attacks in
Java. ACM Trans. Program. Lang. Syst. 41(3), 18:1–18:58 (2019)

29. Ngo, M.N., Tan, H.B.K.: Applying static analysis for automated
extraction of database interactions in web applications. Inf. Softw.
Technol. 50(3), 160–175 (2008)

30. Berger, B.J., Nguempnang, R., Sohr, K., Koschke, R.: Static extrac-
tion of enforced authorization policies SeeAuthz. In: 2020 IEEE
20th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pp. 187–197. IEEE Computer Society,
Los Alamitos (2020)

31. Santos, A., Cunha, A., Macedo, N.: The high-assurance ROS
framework. In: 2021 IEEE/ACM 3rd International Workshop on
Robotics Software Engineering (RoSE), pp. 37–40 (2021)

32. Santos, A., Cunha, A., Macedo, N., Lourenço, C.: A framework
for quality assessment of ROS repositories. In: 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pp. 4491–4496 (2016)

33. HAROS. To which extent is ROS 2 supported? https://github.com/
git-afsantos/haros/issues/117 Accessed on 2024-02-28

34. Liu, Y., Guan, Y., Li, X., Wang, R., Zhang, J.: Formal analysis and
verification of DDS in ROS 2. In: 2018 16th ACM/IEEE Inter-
national Conference on Formal Methods and Models for System
Design (MEMOCODE), pp. 1–5 (2018)

35. Perez, I., Mavridou, A., Pressburger, T., Will, A., Martin, P.J.: Mon-
itoring ROS 2: from requirements to autonomous robots (2022).
arXiv preprint. arXiv:2209.14030

36. Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundare-
san, A., Rosu, G.: Rosrv: runtime verification for robots. In: Pro-
ceedings, vol. 5, Runtime Verification: 5th International Confer-
ence, RV 2014, Toronto, ON, Canada, September 22–25, 2014,
pp. 247–254. Springer (2014)

Springer

https://arxiv.org/abs/1806.06681
https://discourse.ros.org/t/ros-2-alternative-middleware-report/33771
https://discourse.ros.org/t/ros-2-alternative-middleware-report/33771
http://www-apr.lip6.fr/~mine/publi/article-monat-al-ecoop20.pdf
http://www-apr.lip6.fr/~mine/publi/article-monat-al-ecoop20.pdf
http://www-apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf
https://github.com/git-afsantos/haros/issues/117
https://github.com/git-afsantos/haros/issues/117
https://arxiv.org/abs/2209.14030

Inference of access policies through static analysis

37. Ferrando, A., Cardoso, R.C., Fisher, M., Ancona, D., Franceschini,
L., Mascardi, V.: ROSMonitoring: a runtime verification frame-
work for ROS. In: Proceedings, vol. 21, Towards Autonomous
Robotic Systems: 21st Annual Conference, TAROS 2020, Not-
tingham, UK, September 16, 2020, pp. 387–399. Springer (2020)

38. Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Towards rule-based
dynamic safety monitoring for mobile robots. In: Proceedings,
vol. 4, Simulation, Modeling, and Programming for Autonomous
Robots: 4th International Conference, SIMPAR 2014, Bergamo,
Italy, October 20–23, 2014, pp. 207–218. Springer (2014)

39. Rohith, R., Moharir, M., Shobha, G., et al.: Scapy – a powerful
interactive packet manipulation program. In: 2018 International
Conference on Networking, Embedded and Wireless Systems (IC-
NEWS), pp. 1–5. IEEE (2018)

40. Bédard, C., Lajoie, P.-Y., Beltrame, G., Dagenais, M.: Message flow
analysis with complex causal links for distributed ROS 2 systems.
Robot. Auton. Syst. 161, 104361 (2023)

41. Deng, G., Xu, G., Zhou, Y., Zhang, T., Liu, Y.: On the (in)security
of secure ROS 2. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS’22,
pp. 739–753. Association for Computing Machinery, New York
(2022)

42. OSRF. https://github.com/osrf/nodl_to_policy. Accessed on 2024-
02-28

43. ROS2 Design. Design node interface definition language (IDL).
https://github.com/ros2/design/pull/266. Accessed on 2024-02-28

44. Caiazza, G.: Application-level Security for Robotic Networks. PhD
thesis, Ca’ Foscari University of Venice, Italy (2021)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://github.com/osrf/nodl_to_policy
https://github.com/ros2/design/pull/266

	Inference of access policies through static analysis
	Abstract
	Introduction
	Contributions
	Outline

	Robot Operating System 2 (ROS 2)
	Node
	Communication mechanisms
	ROS computational graph
	Talker--listener ROS 2 Python example
	ROS 2 layered architecture
	Securing an ROS 2 application
	Access policies
	Minimal access control policies

	Running example

	Formalization
	Notation and background
	Syntax
	Concrete domain and semantics
	Abstract domain and semantics
	Running example

	Extraction of the ROS computational graph
	Definition
	Nodes
	Edges

	Extraction
	Running example

	Policy extraction

	LiSA4ROS2
	Library for Static Analysis (LiSA)
	LiSA4ROS2 architecture
	rclpy semantics

	Evaluation
	Related work
	Future work
	Conclusions
	Appendix A: DDS permissions
	Mapping ROS 2 entities to DDS entities
	DDS policy generated by SROS2 during artifact creation
	Minimal DDS policies generated by SROS2 starting from the LiSA4ROS2 policy

	Appendix B: ROS 2 internal topics and services
	Appendix C: Extracting policy from a graph
	Running example

	References

