
Information Flow Analysis for Detecting1

Non-Determinism in Blockchain2

Luca Olivieri ! �3

University of Verona, Corvallis Srl4

Luca Negrini ! �5

Corvallis Srl6

Vincenzo Arceri ! �7

University of Parma8

Fabio Tagliaferro ! �9

CYS4 Srl10

Pietro Ferrara !�11

Ca’ Foscari University of Venice12

Agostino Cortesi ! �13

Ca’ Foscari University of Venice14

Fausto Spoto !�15

University of Verona16

Abstract17

A mandatory feature for blockchain software, such as smart contracts and decentralized applications,18

is determinism. In fact, non-deterministic behaviors do not allow blockchain nodes to reach one19

common consensual state or a deterministic response, which causes the blockchain to be forked,20

stopped, or to deny services. While domain-specific languages are deterministic by design, general-21

purpose languages widely used for the development of smart contracts such as Go, provide many22

sources of non-determinism. However, not all non-deterministic behaviours are critical. In fact, only23

those that affect the state or the response of the blockchain can cause problems, as other uses (for24

example, logging) are only observable by the node that executes the application and not by others.25

Therefore, some frameworks for blockchains, such as Hyperledger Fabric or Cosmos SDK, do not26

prohibit the use of non-deterministic constructs but leave the programmer the burden of ensuring27

that the blockchain application is deterministic. In this paper, we present a flow-based approach to28

detect non-deterministic vulnerabilities which could compromise the blockchain. The analysis is29

implemented in GoLiSA, a semantics-based static analyzer for Go applications. Our experimental30

results show that GoLiSA is able to detect all vulnerabilities related to non-determinism on a31

significant set of applications, with better results than other open-source analyzers for blockchain32

software written in Go.33

2012 ACM Subject Classification Security and privacy → Distributed systems security; Theory of34

computation → Program analysis; Theory of computation → Program verification; Software and its35

engineering → Software notations and tools36

Keywords and phrases Static Analysis, Program Verification, Non-determinism, Blockchain, Smart37

contracts, DApps, Go language38

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.1639

Funding Vincenzo Arceri: Bando di Ateneo per la ricerca 2022, founded by University of Parma,40

project number: MUR_DM737_2022_FIL_PROGETTI_B_ARCERI_COFIN, Formal verification41

of GPLs blockchain smart contracts42

Pietro Ferrara: SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU,43

iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Investment44

1.5) NextGeneration EU - Project ID: ECS 00000043, and SPIN-2021 "Static Analysis for Data45

© Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Ferrara, Agostino Cortesi,
Fausto Spoto;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 16; pp. 16:1–16:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca.olivier@univr.it
mailto:luca.negrini@corvallis.it
mailto:vincenzo.arceri@unipr.it
mailto:fabio.tagliaferro@cys4.com
mailto:pietro.ferrara@unive.it
mailto:cortesi@unive.it
mailto:fausto.spoto@univr.it
https://doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Scientists” funded by Ca’ Foscari University46

Agostino Cortesi: SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU,47

iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Investment48

1.5) NextGeneration EU - Project ID: ECS 00000043, and SPIN-2021 "Ressa-Rob" funded by Ca’49

Foscari University50

1 Introduction51

In the last decade, blockchain software has undergone a notable evolution. In 2008, Bitcoin [33]52

introduced a Turing-incomplete low-level language to specify locking conditions that must53

hold for a transaction to be accepted by the network [3]. In 2013, Ethereum [8, 4] provided a54

Turing-complete bytecode where smart contract rules are enforced by the blockchain consensus.55

The execution of the code takes place on the Ethereum Virtual Machine (EVM), resulting in56

software identified as decentralized applications (DApps). EVM bytecode is supported by high-57

level domain-specific languages (DSLs), such as Solidity and Vyper, that have been designed58

from scratch for the purpose of being executed in the restricted environment of blockchain.59

Subsequently, thanks to frameworks such as Hyperledger Fabric [2], Tendermint [6, 29], and60

Cosmos SDK [30], general-purpose programming languages (GPLs) such as Go, Java and61

JavaScript can also be used to develop smart contracts and DApps, with Go being the most62

popular in industrial blockchains.63

The popularity of GPLs for writing smart contracts and DApps is steadily increasing.64

Their success is mostly due to the maturity of the languages themselves, directly resulting in65

wide communities, consolidated tools (such as IDEs and debuggers), and most importantly a66

pool of expert and knowledgeable developers that can write highly efficient smart contracts.67

Yet, GPLs were not conceived solely for blockchain ecosystems: code that is harmless and68

bug-free in other contexts may result in vulnerabilities and errors. Among these, one of69

the most insidious is non-determinism. When the result of an operation on a blockchain70

is non-deterministic, there is no guarantee that a common state can be reached by the71

network’s nodes, possibly preventing it from reaching consensus. This can manifest, among72

other possibilities, as transaction failures or denial of service. Nevertheless, not all instances73

of non-determinism are intrinsically dangerous: logging the time of a transaction can result74

in different timestamps appearing in each node’s logs, but it does not endanger consensus as75

it is not observable by other nodes. In fact, non-deterministic instructions are problematic76

only if they can affect the shared blockchain state.77

As an example, consider the code in Figure 1, reporting an excerpt of the ValidateBasic78

method from module x/authz (part of the Cosmos SDK versions 0.43.x and 0.44.{0,1}) and79

affected by the vulnerability reported in CVE-2021-411351. The code is meant to fail the80

validation of expired grants. Note that the guard at line 2 involves the local clock of nodes81

(time.Now()) rather than leveraging the timestamp included in the Block header provided82

by the Byzantine Fault Tolerant clock, that is agreed upon by the consensus. As reported in83

the official Cosmos forum [12]:84

Local clock times are subjective and thus non-deterministic. An attacker could craft85

many Grants, with different but close expiration times (e.g., separated by a few seconds),86

and try to exercise the granted functionality for all of them close to their expiration87

1 https://nvd.nist.gov/vuln/detail/CVE-2021-41135.

https://nvd.nist.gov/vuln/detail/CVE-2021-41135

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:3

1 func (g Grant) ValidateBasic () error {
2 if g. Expiration .Unix () < time.Now (). Unix () {
3 return sdkerrors .Wrap(ErrInvalidExpirationTime , "Time can ’t be in the past")
4 }
5 // [...]
6 }

Figure 1 Cosmos SDK code affected by CVE-2021-41135

time. It is likely in such a scenario that some nodes would consider a grant to have88

expired while others would not, leading to a consensus halt.89

The code was then fixed in version 0.44.2, but is still a clear example of a vulnerability arising90

from non-deterministic constructs.91

The problem of non-determinism in blockchain software is clearly felt by the communities92

of the blockchain frameworks treated in this paper. As a representative example, the93

Tendermint Core documentation [27], while discussing non-determinism, reports:94

While programmers can avoid non-determinism by being careful, it is also possible95

to create a special linter or static analyzer for each language to check for determinism.96

In the future we may work with partners to create such tools.97

Paper contribution98

This paper presents a software verification approach based on static analysis for the detection99

of non-deterministic vulnerabilities in blockchain ecosystems, covering the most popular100

frameworks for developing this kind of software, such as Hyperledger Fabric, Tendermint101

Core and Cosmos SDK. We shift the classical focus that has been applied in this context102

beyond the mere syntactic absence of non-deterministic constructs. In fact, we aim at103

distinguishing harmful usages of non-determinism, that is, constructs affecting the blockchain104

state and response, from harmless ones. As a consequence, the set of alarms issued to the105

user sensibly shrinks, as shifting from a syntactic approach towards a semantic one leads to106

a sensible reduction in false positives. We propose a semantic flow-based static analysis for107

detecting flows from non-deterministic constructs to blockchain state modifiers and response108

builders. The choice of a flow-based analysis seems natural when the problem is phrased109

as “is there execution where a non-deterministic value affects the blockchain state or the110

contract’s response?”. We thus exploit the well-consolidated literature in this area to adopt111

scalable solutions that soundly over-approximate all program executions.112

We provide a static analyzer implementing our approach: GoLiSA2, a sound static analyzer113

based on abstract interpretation [10] for Go applications. Intuitively, we use our analyzer’s114

fixpoint engine to mark all program variables (local variables, objects’ fields, . . .) that can115

contain values affected, directly or indirectly, by a non-deterministic construct or computation.116

Specifically, we can perform a shallower analysis detecting only explicit flows using Taint117

analysis [43, 14], where non-deterministic constructs and blockchain state modifiers are118

modeled as sources and sinks, respectively. Alternatively, we can perform a deeper analysis119

able to also detect implicit flows by means of the Non-interference analysis [24, 25], where120

non-deterministic constructs and blockchain state modifiers are instead modeled as low and121

2 https://github.com/lisa-analyzer/go-lisa

ECOOP 2023

https://github.com/lisa-analyzer/go-lisa

16:4 Information Flow Analysis for Detecting Non-Determinism in Blockchain

high variables, respectively. Both solutions are implemented in GoLiSA, whose analysis122

starts by syntactically visiting the input application to annotate all sources and sinks. The123

annotations are dynamically generated depending on the kind of application of interest (i.e.,124

Hyperledger Fabric, Cosmos SDK, or Tendermint Core). Since there is no predefined set125

of sources in the target program, both Taint analysis and Non-interference are parametric:126

they consider as harmful (i.e., tainted or low integrity, depending on the analysis that is to127

be executed) only variables that are annotated as sources. The fixpoint engine then takes128

care of propagating values coming from sources on the entirety of the program, exploiting129

our analyses implementations. After the fixpoint converges, a mapping stating if each130

program variable is the result of a non-deterministic computation is available at each program131

point. These are then used by our non-deterministic semantic checkers, that visit the whole132

application searching for statements annotated with the sink annotation. Whenever one is133

found, the mappings are used to determine if the values used as parameters of the call are134

critical or, in the case of Non-interference, if the call happens on a critical state.135

Our approach, as highlighted by our evaluation, shows a significant decrease of false136

positives on real-world blockchain applications compared to other analyzers for blockchain137

non-determinism. The solution has been experimented on a benchmark of more than 600138

real-world blockchain programs written in Go. These show that GoLiSA is able to perform the139

analysis on the totality of smart contracts in this significant benchmark, and to successfully140

report their non-determinism vulnerabilities.141

The analyses are then evaluated in terms of precision of the results (true positive, false142

positive, and false negative alarms). Based on these criteria, GoLiSA outperforms existing143

open-source static analyzers for Go blockchain software. Moreover, the evaluation shows that144

the execution time of the analyses is not impractical for real use cases.145

To the best of our knowledge, GoLiSA is the first sound semantic-based static analyzer146

for blockchain software able to precisely detect critical non-determinism behaviors while147

scaling to real-world programs.148

Summarizing, our contribution is threefold, as we provide:149

a detailed investigation on the sources and the sinks that lead to non-determinism issues150

in the most popular blockchain frameworks;151

a flow-based static analysis for the detection of critical non-determinism behaviors, with152

two instantiations exploiting different formalizations;153

an open-source sound static analyzer for detecting critical non-deterministic behaviors in154

blockchain software written in Go.155

Paper structure156

Sect. 2 reports an overview about blockchain software using Go and the most popular157

frameworks to develop it. Sect. 3 discusses the problem of non-deterministic behavior in158

blockchain context. After reporting an overview on information flow analyses, Sect. 4 presents159

our core contribution for detecting non-deterministic behavior in blockchain software, that160

relies on GoLiSA. Sect. 5 reports our experimental results. Sect. 6 discusses the related work.161

Finally, Sect. 7 concludes the paper.162

2 Preliminaries: Go and Blockchain163

Go (https://golang.org) is a statically typed, compiled, open-source, and general-purpose164

high-level programming language designed by Google to speed up software development,165

and that is appreciated for its cross-compilation feature. Its versatility and performance166

https://golang.org

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:5

putState(key, value)

getState(key, value)

key value

world state database

chaincode

key value

key value

…

Figure 2 The world state database of Hyperledger Fabric.

contributed to its diffusion in the blockchain environment: popular frameworks such as the167

Hyperledger Fabric3, Tendermint4 and the Cosmos SDK5 are written in Go. These rely on168

Go to develop efficient smart contracts and DApps, exploiting its high performances.169

2.1 Blockchain Environments170

Hyperledger Fabric (HF) is a permissioned blockchain framework designed to be adopted171

in enterprise contexts, supported by the Linux Foundation and other contributors such as172

IBM, Cisco, and Intel. In HF, smart contracts and DApps are written in chaincode that173

can be implemented in several GPLs such as Go, JavaScript, and Java. In most cases, the174

chaincode interacts only with the world state database component of the ledger, and not175

with the transaction log [26]. Go is currently the most popular language on GitHub related176

to chaincode6, as Go smart contracts are the best performing ones [23].177

Tendermint Core, recently rebranded as Ignite, is a platform for building blockchain178

nodes, supporting both public and permissioned proof-of-stake (PoS) networks. It is a179

Byzantine Fault Tolerant (BFT) middleware that separates the application logic from the180

consensus and networking layers, allowing one to develop blockchain applications written in181

any programming language, including Go, and replicate them on many machines [7].182

Cosmos SDK is an open-source Go framework that eases the development of blockchain183

applications while optimizing their execution by running them on Tendermint Core. As shown184

in Figure 3, Cosmos SDK abstracts all the boilerplate code needed to set up a Tendermint185

Core node, allowing for customized protocol configurations. The programming style follows186

the object-capability model, where the security of subcomponents is imperative, especially187

those belonging to the core library. Cosmos SDK is a framework for DApps, supporting188

different functionalities through highly customizable modules (that can also manage smart189

contracts).190

3 https://www.hyperledger.org/use/fabric
4 https://tendermint.com/
5 https://v1.cosmos.network/sdk
6 Querying the keyword chaincode on GitHub (https://github.com/search?q=chaincode) results in
more than 2100 repositories, about half of which are written in Go. Accessed: 01-12-2022.

ECOOP 2023

https://www.hyperledger.org/use/fabric
https://tendermint.com/
https://v1.cosmos.network/sdk
https://github.com/search?q=chaincode

16:6 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Application

State

Tendermint

Database of blocks

Messages

TCPTCP

ABCI
via

TCP

Other
Tendermint

nodes
running
the same

application

Cosmos SDK

Modules

Figure 3 Cosmos SDK architecture

2.2 Blockchain Consensus191

Consensus protocols ensure the validity and authenticity of transactions performed in the192

blockchain, as they check results of smart contracts or DApps computations through the193

state of the network’s nodes. If a given number of nodes agree on the final state, consensus is194

reached and the transaction is validated. Otherwise, it is discarded and the nodes proposing195

spurious states are excluded from the network. When consensus cannot be reached, the196

blockchain either forks or halts. Deterministic execution is thus required for software that197

runs in a blockchain, as it guarantees that, when starting from a common state, the same198

result is reached in any distinct blockchain node, avoiding inconsistencies among peers and199

consensus failures. Nevertheless, GPLs provide several components that can explicitly lead200

to non-determinism, such as (pseudo-)random number generators or external computations.201

Furthermore, even methods that are explicitly sequential and deterministic pose a threat202

when executed on different nodes, such as the time.Now() call from Figure 1. Despite203

these threats, popular blockchain frameworks such as HF and Cosmos SDK do not enforce204

particular restrictions on the usage of non-deterministic methods and components.205

3 Non-Deterministic Behaviors in Blockchain Software: Sources and206

Sinks207

When trying to prevent non-deterministic vulnerabilities, a first solution is to limit the208

expressiveness of the GPL by either black- or white-listing APIs and constructs. Consider209

the Go snippets reported in Figure 4. Both fragments rely on the time API to retrieve210

a timestamp from the host system. In general, the results of calls to the time API are211

subjective to the node executing them, and they might lead to blockchain non-determinism212

due to different system settings (e.g., time, date, time zones, . . .) or due to nodes executing213

the code at slightly different times. Specifically, Figure 4a shows a safe usage of the time API:214

the timestamp is only used for logging with no observable consequences on the blockchain215

state or the execution result. Instead, Figure 4b reports a problematic usage of the API,216

as the timestamp is stored in the blockchain using PutState, an HF-specific function that217

updates the shared network state. Since timestamps could differ on each node, this potentially218

leads to inconsistent executions (i.e., different blockchain states or execution results), causing219

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:7

1 func transfer (from , to Address , value int64 , stub *shim. ChaincodeStub) {
2 start := time.Now ()
3 // ... transfer operations that takes some milliseconds ...
4 elapsed := time.Now (). Sub(start)
5 log. Println ("Time elapsed for the transfer operations : ", elapsed)
6 }

(a) Example of safe use of the time API
1 func transfer (from , to Address , value int64 , stub *shim. ChaincodeStub) {
2 t := time.Now ()
3 // ... transfer operations ...
4 err := shim. PutState (" transaction -time", t)
5 // ... other operations ...
6 }

(b) Example of issue of non-determinism with the time API

Figure 4 Examples of harmless and harmful non-determinism in blockchain

transaction failure7.220

It should thus be evident that identifying sources of non-determinism and preventing221

their usage is not enough when we aim at discerning between harmful and harmless non-222

deterministic constructs. In fact, one should also recognize how these are used, determining if223

they can influence the shared blockchain state. In the rest of this section we discuss, for each224

blockchain framework presented in Section 2, (i) the constructs that generate potentially225

harmful non-determinism (that is, sources of non-deterministic values), and (ii) the blockchain226

state modifiers and response builders (i.e., statements that make a transaction succeed or fail),227

namely sinks that are sensitive to non-determinism8. This will prepare the ground for the228

core contribution of this paper: a static approach to detect critical usages of non-determinism229

in blockchain software, reported in Section 4.230

3.1 Sources of Non-Determinism231

The sources of non-determinism can be logically split in two families, the first being related232

to the combination of framework and GPL adopted to develop the software. This family233

comprises a set of constructs and APIs allowed by the framework that may break the234

consensus during the execution of smart contracts or DApps. In Go, these are:235

iteration over maps that, being the iteration order unspecified9, is not guaranteed to be236

deterministic;237

parallelization and concurrency, that can lead to race conditions on shared resources,238

thus creating non-determinism on the computed values;239

global variables, that may change innately and cause inconsistencies to the results, since240

they depend on the application state of a peer and not on that of the blockchain [32, 5].241

random value generators, that can potentially be allowed in smart contracts [9] to employ242

custom logic while being non-deterministic by-definition.243

The second family instead involves statements related to the underlying environment,244

such as file systems, operating systems, databases, and Internet connections. While these are245

7 In this case, the GetTxTimestamp method from the HF API should have been used instead of
time.Now.

8 The complete list of sources and sinks of non-determinism is available at https://github.com/
lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md.

9 https://golang.org/ref/spec#For_statements

ECOOP 2023

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md
https://golang.org/ref/spec#For_statements

16:8 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Level Category Package Statements/Methods
Framework/Language Map iteration - range on map

Parallelization/concurrency - go (Go routine), <- (channel)
Random number generation APIs math/rand, crypto/rand *
Global variables - -

Environment File system APIs io, embed, archive, compress *
OS APIs os, syscall, internal, time *
Database APIs database *
Internet APIs net *

Table 1 Potential non-deterministic behaviors related to Go

not intrinsically non-deterministic, they become dangerous when their result is expected to246

be consistent on different environments. These comprise APIs handling:247

file systems, as the program might rely on files that are not present on all nodes, as they248

might have been deleted, edited, moved, or there might be insufficient disk space causing249

any operation to fail;250

operating systems (OS), since the blockchain might operate on various hosts and language251

APIs could return different results on each OS (e.g., time and date methods could return252

different values if nodes are not synchronized);253

databases, where records might be deleted, edited, or contain different data;254

Internet connections, as networking setup or errors could cause some addresses to be255

unreachable on few nodes of the network.256

Table 1 summarizes the instructions and libraries of Go10 that we considered as cases of257

non-determinism, where ∗ represents the entirety of the package. For the sake of simplicity,258

the table reports instructions and packages omitting the full signatures of each method.259

Note that only few methods within those packages lead to non-deterministic behaviors: for260

instance, most methods from package time handling dates and times do not pose a threat261

in smart contracts and DApps, and are in fact quite common. However, operations such262

as retrieving the current time of the OS (i.e., methods Since, Now, Until) are potentially263

dangerous.264

3.2 Sinks of Non-Determinism265

Sinks of non-determinism comprise constructs and APIs with the ability of both modifying266

the common state of the blockchain or having an impact on the response of blockchain267

networks. While the former is inherently involved in consensus protocols, the execution268

of code within the blockchain does not necessarily change the shared state (e.g., functions269

that simply read a value). However, the execution may lead to non-deterministic responses,270

compromising the consensus of the network, as in the simple example reported in Figure 5.271

Table 2, where the Critical point column identifies what part of the API should not receive272

non-deterministic values, summarizes the main instructions and components that we consider273

as sinks for non-determinism.274

10The full list of Go APIs sources considered in our analyses is available at https://github.com/
lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_
sources.txt. The list consider API until Go version 1.17.

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:9

1 func (s * SmartContract) transaction (APIstub shim. ChaincodeStubInterface) sc. Response {
2
3 if rand.Int () % 2 == 0 {
4 return shim. Error ("Fail")
5 } else {
6 return shim. Success (nil)
7 }
8 }

Figure 5 Example of issue of non-determinism related to the blockchain response

Framework Package Type/Interface Statements/Methods Critical point
HyperLedger Fabric shim ChaincodeStubInterface PutState parameters

DelState parameters
PutPrivateData parameters
DelPrivateData parameters
Success statement
Error statement

Tendermint Core abci/types Application ResponseBeginBlock instance returned
ResponseDeliverTx instance returned
ResponseEndBlock instance returned
ResponseCommit instance returned
ResponseCheckTx instance returned

Cosmos SDK types KVStore Set parameters
Delete parameters

kv, dbadapter, gaskv, iavl, Store Set parameters
listenkv, prefix, tracekv, Delete parameters
types/errors ABCIError statement

Redact statement
ResponseDeliverTx statement
ResponseCheckTx statement
WithType statement
Wrap statement
Wrapf statement

Table 2 Main sinks for blockchain software written in Go

3.2.1 Hyperledger Fabric APIs for Go275

In HF, chaincode executes transaction proposals against world state data that may change its276

state. Programmatically, interface ChaincodeStubInterface from the HF Go APIs enables277

access and modification of the blockchain state. Table 2 reports the current components (as278

of version 2.4) involved in the data-write proposal. The semantics of these components does279

not affect the blockchain state until the transaction is validated and successfully committed.280

Hence, if these components lead to different results (i.e., changes to the shared state) due281

to non-determinism, consensus will not validate the transaction and no new state will be282

committed. Regarding the response statements, HF provides the Success and Error methods283

to yield successful and failed transaction responses, respectively.284

3.2.2 Tendermint Core APIs for Go285

Tendermint Core is a middleware with no explicit access to application state by design,286

enabling communication through the Application BlockChain Interface (ABCI11). Figure 6287

depicts the consensus process used to validate and store a transaction using the ABCI288

methods. As reported in the official documentation [27] of Tendermint Core v. 0.35.1, only289

11 https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/
docs/introduction/what-is-tendermint.md#abci-overview.

ECOOP 2023

https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#abci-overview
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#abci-overview

16:10 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Figure 6 ABCI methods and consensus flow

Store 1 - Manage by keeper of
Module 1

Store 2 - Manage by keeper of
Module 2

…

Main Multistore

Figure 7 Main store of Cosmos SDK

BeginBlock, DeliverTx, EndBlock, and Commit must be strictly deterministic to ensure290

consensus. Although the logic of these methods is different, they possess similar structure:291

they all accept a request and return a response (ResponseBeginBlock, ResponseDeliverTx,292

ResponseEndBlock, ResponseCommit), with the latter that must be deterministic.293

3.2.3 Cosmos SDK APIs294

Cosmos SDK handles both the application and the blockchain state through the store12. At295

a high level, the store is a set of key-value pairs used to store and retrieve data, implemented296

by default as a multistore (i.e., a store of stores), as shown in Figure 7. The multistore297

encapsulation enables modularity of the Cosmos SDK, as each module declares and manages298

its own subset of the state using specific keys. Keys are typically held by keepers, a Cosmos299

SDK abstraction with the role of managing access to the multistore’s subset defined by each300

12 https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/
docs/core/store.md.

https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/docs/core/store.md
https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/docs/core/store.md

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:11

1 var l, h
2 h := l

(a)

1 var l, h
2 if l = true then
3 h := 3
4 else
5 h := 42

(b)

1 var l, h
2 if h = 1 then
3 (* time - consuming work *)
4 l := 0

(c)

Figure 8 Example of (a) explicit, (b) implicit, and (c) side channel flows, where h and l represent
secret and public variables respectively

module. The Store type is declared in several packages (e.g., kv, tracekv, gaskv, ival),301

with all definitions implementing the KVStore interface. The latter provides common APIs302

to access and modify the state of the blockchain using methods such as Set and Del. As for303

responses, Cosmos provides several methods (such as ABCIError, Wrap, ResponseDeliverTx)304

in package types/errors to return failed transaction responses.305

4 Information Flow Analysis for Non-Determinism Detection306

In this section we introduce and discuss our approach for detecting non-deterministic behaviors307

in blockchain software. In particular, we consider non-determinism as critical only if a non-308

deterministic value can affect the blockchain state, either directly (i.e., being stored inside309

the state) or indirectly (e.g., guarding the execution of state updates). Any other usage of310

non-determinism is considered safe, as it does not affect the blockchain state or response. As311

such, when mentioning non-determinism in the remainder of the chapter, we implicitly refer312

to its critical version. We rely on information flow analysis for detecting values originating313

from sources of non-determinism that can affect the state of the blockchain. We only focus314

on static analyses, since they soundly over-approximate all possible behaviors of target315

programs and can thus give guarantees about the absence of such behaviors. We instantiate316

two types of analyses: a Taint analysis, able to capture the so-called explicit flows, and a317

Non-interference analysis, that can also detect implicit flows.318

4.1 An Overview on Information Flow319

Information flow analyses [11, 38] address the problem of understanding how information320

flows from one variable to another during a program’s execution. These analyses usually321

partition the space of program variables into private (or secret) and public, with the latter322

being accessible to — and in some cases also modifiable by — an external attacker. The323

goal of these analyses is then to find program executions where information flows from one324

partition to the other, that is, where values of variables from one partition can affect the325

values of variables from the other one. Figure 8 reports examples13 of the three main types326

of flows, namely:327

explicit flow: when a secret variable is assigned to a value obtained starting from public328

variables;329

implicit flow: when an assignment to a secret variable is conditionally executed depending330

on values of public variables;331

side channel: where some observable properties of the execution, e.g., the amount of332

computational resources used, depends on the values of some secret variables.333

13 https://en.wikipedia.org/wiki/Information_flow_(information_theory).

ECOOP 2023

https://en.wikipedia.org/wiki/Information_flow_(information_theory)

16:12 Information Flow Analysis for Detecting Non-Determinism in Blockchain

In general, the term source is traditionally used for variables holding values that one334

wants to track along program executions, while sink is used to describe locations where335

values coming from sources should not flow. Using this terminology, when the property of336

interest ensures the integrity of secret variables, information flow analyses can be instantiated337

using public variables as sources and private ones as sinks, exactly as in Fig. 8 and in the list338

above. These are able to detect situations where (i) a possibly corrupted value provided by a339

malicious attacker could be stored into variables whose content is supposed to be reliable, or340

(ii) such a value governs the update to private variables. If, however, one wants to ensure the341

confidentiality of secret variables, the same analyses can be recasted with private variables342

acting as sources and public ones as sinks, thus searching for flows in the opposite direction.343

The target of the analysis is then to find disclosures of private data to external entities.344

In the context of non-deterministic behaviors in blockchain environments, information345

flow analyses can be used to detect when non-deterministic values end up or affect the346

blockchain’s state, thus checking the integrity of that state w.r.t. non-deterministic values.347

As such, we are interested in information flowing from public to private variables, and348

we will use sources to identify ones that are initialized to non-deterministic values and349

sinks to identify all variables that have an effect on the blockchain’s state. Moreover, we350

will focus on explicit and implicit flows. In fact, side channels are typically studied to351

detect secret information leaking through, for instance, execution time, thus violating the352

confidentiality of that information instead of its integrity. On the other hand, explicit and353

implicit flows identify non-deterministic values that are either used to update the blockchain’s354

state or a transaction’s result, or that govern their execution. As a concrete example, recall355

the code from Figure 1: the vulnerability presented there is an implicit flow since the356

blockchain’s state is not directly updated with non-deterministic values, but the execution of357

the update (i.e., the return statement) is conditional to some non-deterministic value (i.e.,358

g.Expiration.Unix() < time.Now().Unix()).359

In the following, we introduce two well-established information flow analyses that we will360

use for non-determinism detection.361

4.1.1 Non-Interference362

Non-interference [24, 25] is a notion of security capturing the idea that if computations over
private information are independent from public information, then no leakage of the former
can happen. In simple terms, after partitioning the space of inputs of a program P into low
(private or secret, denoted by L), and high (public or available to anyone, denoted by H),
Non-interference is satisfied if changes in the high input do not affect the observable (i.e.,
low) output of the program:

∀iL ∈ L,∀iH, i′
H ∈ H . P(iL, iH)L = P(iL, i′

H)L

This notion is often instantiated in language-based security by partitioning the space of363

program variables between L and H, and finding instances of explicit or implicit flows between364

these partitions. Such analysis computes, for each program point, a mapping from variables365

to the information level they hold (low or high), while also keeping track of an execution state366

depending on the information level of the Boolean conditions that guard the program point.367

Violations of Non-interference for integrity can then be detected whenever an assignment to368

a variable in H either (i) assigns a low value (that is, an expression involving variables in L),369

or (ii) happens with a low execution state (that is, guarded by at least a Boolean condition370

that involves variables in L), thus identifying both explicit and implicit flows. This can be371

formalized as a type system for security [38].372

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:13

Abstract state

Value domain

Heap domain

Go front-endGo application

LiSA

CFG fix-point

Semantic checker
Analysis dump

CFG dump
Warnings

LiSA CFGs

…

Interprocedural
analysis

• Intraprocedural analysis
• Context-sensitive analysis
• …

analysis results

compute results

GoLiSA value analyses
• Taint analysis
• Non-interference
• …

GoLiSA heap analyses
• Monolithic heap
• Point-based heap
• …

Analysis results
abstract

semantics

to
symbolic

expressions

GoLiSA

GoLiSA semantic checker
• Non-determinism checker
• Overflow checker
• …

Figure 9 GoLiSA overall execution

4.1.2 Taint Analysis373

Taint analysis [43, 14] is an instance of information flow analysis that can be seen as374

simplification of Non-interference considering only explicit flows. In this context, variables375

are partitioned into tainted and untainted (or clean), with the former representing variables376

that can be tampered with by an attacker and the latter representing variables that should377

not contain tainted values across all possible program executions. Roughly, Taint analysis378

corresponds to the language-based Non-interference instantiation without the execution state,379

thus unable to detect implicit flows. Taint has been instantiated to detect many defects380

in real-world software, such as web-application vulnerabilities [16], privacy issues [22] (also381

related to GDPR compliance [20]), and vulnerabilities of IoT software [17].382

4.2 The GoLiSA Static Analyzer383

GoLiSA14 is an abstract interpretation [10] based static analyzer for Go applications, on384

which we will rely for the rest of the paper for reasoning about blockchain software written385

in Go. In this section, we present its architecture and its main feature. GoLiSA relies386

on LiSA [19, 34] (Library for Static Analysis15), a Java library that provides a complete387

infrastructure for the development of static analyzers based on abstract interpretation. In388

particular, LiSA implements several standard components of abstract interpretation-based389

analyzers, such as an extensible control-flow graph representation (CFG), a common analysis390

framework for the development of new static analyses, and fixpoint algorithms on LiSA391

CFGs.392

14Available at https://github.com/lisa-analyzer/go-lisa
15LiSA project and documentation available at https://github.com/lisa-analyzer/lisa

ECOOP 2023

https://github.com/lisa-analyzer/go-lisa
https://github.com/lisa-analyzer/lisa

16:14 Information Flow Analysis for Detecting Non-Determinism in Blockchain

The high-level analysis process of GoLiSA is reported in Fig. 9. The analysis starts with393

the Go front-end (a sub-component of GoLiSA) that compiles Go source code into LiSA394

CFGs and defines the semantics, types and language-specific algorithms that implement the395

Go execution model, capturing the peculiarities of Go in order to make them understandable396

to LiSA (e.g., scoping and shadowing of variables16). These CFGs are then passed to LiSA,397

that analyzes them in a generic language-independent fashion. Roughly, CFGs are passed398

to an interprocedural analysis, a component that cooperates with a call graph to resolve399

calls and compute their results. The interprocedural analysis computes fixpoints over CFGs400

according to some implementation-specific logic (e.g., modularly, relying on call chains, ...).401

Each individual fixpoint relies on language-specific analysis-independent semantics for CFG402

nodes, that is directly provided by GoLiSA: each node is rewritten into a sequence of symbolic403

expressions, modelling the effects that executing a high-level instruction has on the program404

state through low-level atomic semantic operations. Each of these symbolic expressions is fed405

to an abstract state [15], a combination of an abstract domain modelling the dynamic memory406

of the program (heap domain, e.g., point-based heap analysis [1]) and one for tracking values407

of program variables and memory locations (value domain, e.g., intervals [10]). The abstract408

state and its underlying domains compute a sound over-approximation of the expression’s409

effects according to their specific logic, and this can later be exploited by semantic checks to410

issue warnings that are of interest for the user. All analysis components (interprocedural411

analysis, call graph, abstract state, heap domain, value domain and semantic checks) are412

part of LiSA’s configuration, enabling modular composition and implementation of each413

component.414

4.3 GoLiSA for Non-Deterministic Behaviors Detection415

At this point, we are in position to instantiate GoLiSA for the static detection of non-416

deterministic behaviors in blockchain software. The core idea of our solution is to track the417

values generated by the hotspots identified in Section 3.1 during the execution of a program418

using either Taint analysis or Non-interference. Similarly, after the analysis completes, we419

can use a semantic checker to exploit the abstract information provided by the domain of420

choice, checking if any of the sinks specified in Section 3.2 receives one such non-deterministic421

value as parameter or, in the case of Non-interference, if the sink is found in a low execution422

state.423

GoLiSA’s analysis is instantiated as follows:424

Taint analysis and Non-interference are implemented as value domains, both of them being425

non-relational domains (i.e., mapping from variables to abstract values — taintedness426

and integrity level respectively — with no relations between different variables), with427

Non-interference keeping track of the abstractions for each guard;428

field-insensitive program point-based heap domain (Section 8.3.4 of [37]), where any429

concrete heap location allocated at a specific program point is abstracted to a single430

abstract heap identifier;431

context-sensitive [39, 28] interprocedural analysis, abstracting full call-chain results until432

a recursion is found;433

runtime types-based call graph, using the runtime types of call receivers to determine434

their targets;435

16 https://go.dev/ref/spec#Declarations_and_scope

https://go.dev/ref/spec#Declarations_and_scope

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:15

two semantic checkers, for Taint analysis and Non-interference, that scan the code in436

search for sinks, checking the taintedness or integrity level of each sink.437

The analysis begins by visiting the input program to detect the statements annotated as438

sources and propagating the information from them. The analyses produce, for each program439

point, a mapping stating if each variable is the result of a non-deterministic computation.440

These mappings are then used by our semantic checkers, that visit the program in search for441

statements annotated as sinks. When one is found, the mappings are used to determine if442

values used as parameters of the call are critical or, in the case of Non-interference, if the443

call happens on a critical state. The choice of the analysis to run (and thus of the checker to444

execute) is left to the user.445

For instance, let us consider the fragment reported in Figure 4a. At line 5, despite446

variable elapsed being marked as tainted, no warning is raised by GoLiSA regardless of the447

chosen analysis, as it does not reach any sensitive sink. Instead, analyzing the fragment from448

Figure 4b results in the following alarm:449

450
The value passed for the 2nd parameter of this call is tainted ,451
and it reaches the sink at parameter ’value ’452453

The warning is issued with both analyses, since variable t is marked as tainted and reaches a454

blockchain state modifier through an explicit flow.455

Consider now the example reported in Figure 1. Here, no explicit flow happens at456

line 3, that contains the blockchain state modifier Wrap, but its execution depends on the457

non-deterministic value used in the condition at line 2, that is, time.Now().Unix(). As this458

is an implicit flow, the Taint analysis is not able the detect it. GoLiSA will however discover459

it with Non-interference, raising the following alarm:460

461
The execution of this call is guarded by a tainted condition ,462
resulting in an implicit flow463464

4.4 Detection of Sources and Sinks in GoLiSA465

To exploit information flow analyses, the analyzer must know which are the sources and sinks466

of the program. In this regard, GoLiSA provides a solution based on annotations, marking467

the corresponding statements as sources and sinks. In the following, we describe how GoLiSA468

annotates sources (Table 1) and sinks (Table 2) depending on their types.469

Methods and functions470

As shown in Tables 1 and 2, all sinks and several sources correspond to functions and471

methods of APIs from either the Go runtime or the blockchain frameworks. GoLiSA contains472

a list of the signature of these functions and methods and it automatically annotates the473

corresponding calls in the program by syntactically matching them. While we rely on manual474

annotations, they can also be generated using automated tools (e.g., Sarl [18]). For instance,475

when GoLiSA iterates over the following snippet, it is able to discover the call to time.Now,476

that gets annotated as source, and the one to PutState, whose parameters get annotated as477

sinks:478

479
1 key := "key"480
2 tm := time.Now ()481
3 stub. PutState (key , [] byte(tm))482483

Then, the information flow analysis propagates taintedness from the return value of time.Now484

to the second parameter of PutState, thus issuing an alarm at line 3.485

ECOOP 2023

16:16 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Map iterations486

To detect iterations over maps, one needs to reason about typing. GoLiSA exploits runtime487

types inferred by the analysis to identify range statements happening over maps. If a map488

iteration occurs, that is, if the object in a range statement is inferred to be a map, then489

GoLiSA marks as sources the variables used to store keys and values of the map. Consider490

as an example the following code snippet:491

492
1 s := ""493
2 kvs := map[string] string {"a": " hello ", "b": " world !"}494
3 for k, v := range kvs {495
4 s += v496
5 }497
6 stub. PutState ("key", [] byte(s))498499

While analyzing the code, range statements are checked for the types of their parameter.500

GoLiSA annotates as sources both k and v, as kvs is inferred to be a map, while the sink501

at line 6 is detected through already discussed annotations. Information flow analyses can502

then propagate the taintedness from v to s, that in turn flows to the second parameter of503

PutState, issuing an alarm at line 6.504

Global variables505

GoLiSA syntactically annotates every global variable appearing in the program as a source506

of non-determinism, as their value could be modified independently on each peer. For507

instance, in the following code, the value of global variable glob could differ from peer to508

peer depending on the number of times function inc has been executed. This can happen as509

not all peers simulate the same transaction, for instance due to differences in the endorsement510

policy of each peer [32].511

512
1 var glob string513
2 func inc () {514
3 glob += "a"515
4 }516
5 func (s * SmartContract) transaction (stub shim. ChaincodeStubInterface) sc. Response {517
6 stub. PutState ("key", [] byte(glob))518
7 }519520

Before the analysis, GoLiSA iterates over all program components, annotating glob as a521

source. The sink at line 6 is annotated as sink as previously discussed. Then, the information522

flow analysis propagates taintedness from glob to the second parameter of the call to523

PutState, raising an alarm at line 6.524

Go routines525

GoLiSA inspects the code of Go routines, checking the scope of variables they use. If these are526

defined outside the routine using them, they are effectively shared among threads, potentially527

leading to race conditions or non-deterministic behaviors. Hence, GoLiSA annotates the528

such variables as sources. As an example, the following snippet defines and invokes a simple529

Go routine that modifies a variable defined in an enclosing scope:530

531
1 s:= ""532
2 go func (){533
3 for i := 1; i <= 10000; i++ {534
4 s += "0"535
5 }536
6 }537
7 stub. PutState ("key", [] byte(s))538539

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:17

When GoLiSA finds the Go routine, it checks the scopes of each variable, inferring that s540

is declared outside the routine itself. Hence, GoLiSA annotates s at line 1 as source, while541

the sink at line 7 is annotated as previously discussed. Then, the information flow analysis542

propagates taintedness from s to the second parameter of PutState, issuing an alarm at line543

7 since the value of s depends how many times the Go routine has executed the loop body.544

Go channels545

Channels are pipes that connect concurrent Go routines. Operator <- allows interaction with546

channels to retrieve a value from them, blocking until one is available. GoLiSA annotates as547

sources the instructions reading values from channels, as the order in which these are written548

is intrinsically non-deterministic. Consider the following example:549

550
1 c := make(chan int)551
2 go myroutine1 (c)552
3 go myroutine2 (c)553
4 x, y := <- c, <- c554
5 stub. PutState ("key", [] byte(x))555556

GoLiSA iterates over the program searching for occurrences of the operator <- . It then557

annotates variables x and y as sources, as they receive a value from channel c. The sink at558

line 5 is detected as previously discussed. The information flow analysis can then propagate559

taintedness from x to the second parameter of PutState, resulting in an alarm at line 5.560

5 Experimental Evaluation561

In this section, we discuss the experimental evaluation of the information flow analyses562

implemented in GoLiSA to detect non-determinism issues in real-world blockchain software.563

First, we study them from a quantitative point of view, on a set of 651 real-world HF564

smart contracts retrieved from public GitHub repositories. The evaluation focuses on the565

HF framework since, to the best of our knowledge, it is the only framework supported by566

several static analyzers detecting non-determinism issues. This will allow us to compare567

GoLiSA against state-of-the-art static analyzers in this domain. Furthermore, HF is currently568

the most popular and widespread blockchain framework among public GitHub repositories,569

with most smart contracts written in Go. Nevertheless, GoLiSA provides support also for570

detecting non-determinism behaviors for Cosmos SDK and Tendermint Core smart contracts571

and DApps.17572

We compare GoLiSA with two open-source static analyzers for chaincodes, namely573

ReviveˆCC and ChainCode Analyzer. The experiments show that GoLiSA produces574

more precise results in detecting non-deterministic behaviors, outperforming existing static575

analyzers.576

Then, we evaluate the quality of our results on two specific real-world applications, to show577

how the static analyses discussed in Section 4 work and how the information is propagated578

in smart contracts. In particular, we selected the first application from the HF benchmark,579

while the second one is a Cosmos SDK application.18580

All the experiments was performed on a HP EliteBook 850 G4 equipped with an Intel581

Core i7-7500U at 2,70/2,90 GHz and 16 GB of RAM running Windows 10 Pro 64bit, Oracle582

JDK version 13, and Go version 1.17.583

17An industrial application of GoLiSA for detecting non-determinism in Cosmos SDK can be found
here [36].

18The example reported in Figure 1 contains a snippet of code of this application

ECOOP 2023

16:18 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Analysis #A #U ET AT #W #TP #FP #FN
Taint 68 583 2h:15m:03s 12.45s 173 118 55 7
Non-interference 69 582 2h:25m:18s 13.39s 195 124 71 0
Table 3 Analysis evaluation

5.1 Quantitative Evaluation584

The experimental artifact set has been retrieved from 954 GitHub repositories, by querying585

for the chaincode keyword, as smart contracts are called in HF, and selecting chaincodes586

from unforked Go repositories only19, that include the Invoke and Init methods: these are587

the transaction requests’ entry points for chaincodes.20 Then, we filtered out files unrelated588

to smart contracts and removed chaincodes not analyzable due of failures either GoLiSA589

or the tools discussed in Sect. 5.1.1. In particular, GoLiSA failures on such chaincodes are590

due to current missing support of high-order functions, recursion, and C code invocation via591

the built-in Go cmd/go package.21 This resulted in a benchmark consists of 651 chaincodes592

only (∼167391 LoCs), that, from here on, we refer to as HF. Then, each chaincode has been593

manually inspected before applying GoLiSA to search for critical non-deterministic behavior.594

In particular, for each chaincode, we manually searched for sources of non-determinism (if595

present) and checked if the result of the corresponding instructions could have an impact596

(i.e., an update) on the blockchain global state or on the response. If so, we classified this597

behaviour as critical/harmful. On the selected benchmark, we have found a total of 124598

critical/harmful non-deterministic behaviours. In our evaluation, a warning raised by an599

analyzer has been classified as true positive (TP) if it was part of the 124 critical behaviours600

mentioned above, and as false positive (FP) if not. All the critical behaviours, part of the601

124 manually detected, for which there was no warning, have been marked as false negative602

(FN).603

Table 3 reports the results of the experimental evaluation of GoLiSA over the benchmark604

HF, where #A is the number of affected chaincodes (i.e., chaincodes where at least a warning605

was issued), #U is the number of unaffected chaincodes (i.e., chaincodes where no warning606

was raised), ET is the total execution time, AT is the average execution time, #W is the607

total number of warnings issued, #TP is the number of true positives among the raised608

warnings, #FP is the number of false positives among the raised warnings, and #FN is the609

number of false negatives. In terms of execution time, the analyses performed averagely in610

around 15 seconds per chaincode. The experiments shows that Non-interference performs611

better than Taint in terms of precision, being able to detect all the true positives contained612

in HF, with a ratio of false positives less than 40%. This was expected since, as we have613

already discussed in Section 4 and unlike Non-interference, Taint is only able to track explicit614

information flows. In fact, the 7 false negatives (column #FN of Table 3) produced by Taint615

correspond to implicit non-deterministic behaviors.616

19 https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:
false&sort=stars&order=desc. Accessed: 17-10-2022.

20 See https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim.
21We decided not to implement those standard features since this would have required a relevant effort to

support only a few more chaincodes.

https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:19

Tools # W # TP # FP # FN
GoLiSA - Taint 173 118 55 7
GoLiSA - Non-interference 195 124 71 0
ChainCode Analyzer 203 68 135 53
ReviveˆCC 351 79 272 1

Table 4 Warnings triggered by the analyzers on HF

5.1.1 Comparison617

We compared GoLiSA with the open-source static analyzers for Go chaincode described in618

Section 6, namely ChainCode Analyzer and ReviveˆCC. Table 4 reports the comparison619

between GoLiSA and these tools over the same benchmark HF discussed in Section 5.1.620

The comparison shows that GoLiSA - Non-interference finds all the true issues contained621

in the benchmark, achieving the best and most accurate result in terms of precision with a622

36.41% false positives ratio. Instead, although it has some false negatives, GoLiSA - Taint is623

the analysis with the lowest percentage of false positives with the 31.79% .624

ReviveˆCC triggers 351 warnings out of which 77.49% are false positives. The only625

non-deterministic behaviour not detected by ReviveˆCC (last column) is due to the fact that626

it considers the ioutil.ReadFile API as safe, although reading a file should be considered627

non-deterministic in the blockchain context. Finally, ChainCode Analyzer is more precise628

w.r.t. ReviveˆCC, with 66.50% of false positives, but it has also the greatest number of false629

negatives, failing to detect a huge number of critical non-deterministic behaviors. This can630

be attributed to the fact that ChainCode Analyzer does not consider several APIs leading to631

non-determinism as critical and it fails to soundly detect iteration over maps.632

Note that the amount of true positives discovered by GoLiSA analyses differs from the633

ones of other tools. In fact, GoLiSA is the only tool involved in our comparison that issues634

warnings on sinks rather than sources. This translates to fewer alarms being issued whenever635

values of multiple sources flow to the same sink (here, GoLiSA issues a single warning, while636

other tools issue one for each source), and to more alarms being raised whenever the value of637

a single source flows to multiple sinks (here instead, other tools issue a single warning, while638

GoLiSA issues one for each sink).639

5.2 Qualitative Evaluation640

5.2.1 Explicit Flow: the Boleto Contract641

The boleto contract22, taken from HF, comes with a real non-determinism issue that can be642

found with explicit flows, and that was also detected by other tools during the comparison of643

Section 5.1.1. The boleto contract (Figure 10) seems to be a proof of concept application644

handling tickets in an e-commerce store, with the method registrarBoleto used to register645

a ticket.646

Analyzing boleto, GoLiSA detects the explicit flow leading to a non-deterministic behavior647

with both Taint and Non-interference. Method registrarBoleto contains two different648

sources of non-determinism that directly flow into the same sink. The first source detected649

22 https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go

ECOOP 2023

https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go

16:20 Information Flow Analysis for Detecting Non-Determinism in Blockchain

1 func (s * SmartContract) registrarBoleto (APIstub shim. ChaincodeStubInterface , args []
string) sc. Response {

2 // [...]
3 objBoleto . CodigoBarra = strconv .Itoa ((rand.Intn (5) + 10000000 + // [...]
4 var notExpiredDate = time.Now ()
5 objBoleto . DataVencimento = notExpiredDate . Format (" 02/01/2006 ")
6 // [...]
7 boletoAsBytes , _ := json. Marshal (objBoleto)
8 APIstub . PutState (args [0] , boletoAsBytes)
9 // [...]

10 }

Figure 10 Method registrarBoleto of boleto contract

by GoLiSA is the usage of the Random API to generate a barcode at line 3. Instead, the650

second source is the usage of the OS API that retrieves the local machine’s time to set a651

date at line 4. As values from both sources are used to update fields of objBoleto, the latter652

is marked as tainted by the analysis, resulting in boletoAsBytes being tainted as well. As653

reported in Table 2, PutState’s parameters are considered as sinks by GoLiSA’s analyses.654

According to the official documentation of HF23, the PutState method does not affect the655

ledger until the transaction is validated and successfully committed. However, a transaction656

needs to produce the same results among different peers to be validated. Hence, as passing657

non-deterministic values to PutState will cause the transaction to fail, GoLiSA raises a658

warning on line 8.659

5.2.2 Implicit Flow: Cosmos SDK v.43660

Analyzing the code in Figure 1, GoLiSA is able to detect an implicit flow that leads661

to a non-deterministic behavior, that can only be detected using Non-interference. The662

ValidateBasic method of Cosmos SDK v. 0.43.x and v. 0.44.{0,1} was designed to validate663

a grant to ensure it has not yet expired. In this case, the source detected by GoLiSA is664

the OS API used to retrieve the local machine time involved in the expiration check of665

the grant time at line 2 of Figure 1. By propagating the information, GoLiSA detects that666

the expiration check governs the execution of return statement. Since the Wrap method is667

annotated as a sink, GoLiSA triggers an alarm at line 3 of Figure 1 as the sink is contained668

in a block whose guard depends on non-deterministic values.669

5.3 Limits670

Unlike some frameworks and GPLs used in other blockchains, frameworks targeted by this671

paper are used to develop permissioned, and often private, blockchains, meaning that the672

related software is not publicly available or released with open-source licenses. This is also673

the reason why the benchmark HF crawled from GitHub consists of 651 chaincodes, a number674

that is not comparable with smart contract benchmarks obtained investigating other (public675

and permissioned) blockchains. For instance, [44] collects 3075 distinct smart contracts from676

the Ethereum blockchain, resulting in a wider benchmark.677

The proposed solution for detecting non-deterministic behaviors is fully static. It is well678

known that static analysis is intrinsically conservative and may produce false positives. Even679

23 https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/
shim/interfaces.go.

https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:21

CALL
Time.Now()

Line 2

CALL
.Unix(…)

Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
Time.Now()

Line 2

CALL
.Unix(…)

Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
rand.Intn(5)

Line 5

CALL
Time.Now()

Line 7

CALL
strconv.Itoa(…)

Line 5

ASSIGNAMENT
objBoleto.CodigoBarra

Line 5

ASSIGNAMENT
notExpiredDate

Line 7

CALL
notExpiredDate.Format(…)

Line 8

ASSIGNAMENT
objBoleto.DataVencimento

Line 8

CALL
json.Marshal(…)

Line 12

ASSIGNAMENT
boletoAsBytes

Line 12

CALL
APIstub.PutState(…)

Line 13

CALL
Time.Now()

Line 2

CALL
.Unix(…)

Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

Figure 11 Simplified view of explicit flow computed by GoLiSA during the analysis of
registrarBoleto

if few have been raised by GoLiSA on the selected benchmark, one should expect more false680

positives when applying our approach to arbitrary DApps.681

6 Related Work682

The non-determinism of smart contracts written in GPLs is a well-known issue [32, 45].683

Frameworks such as Takamaka [41, 42] enforce determinism adopting a conservative approach684

that limits the set of instructions and APIs of the target language, avoiding unsafe statements685

that might lead to non-deterministic behaviors through white-listing fully deterministic APIs.686

This approach ensures safe development while preventing that API extensions coming with687

new language versions can bypass the check. However, it also severely limits the exploitable688

features of the GPL. On the other hand, black-listing undesired APIs is a much harder689

approach to maintain, but it seems the most widespread technique in Go analyzers. For690

instance, ChainCode Analyzer [31] and ReviveˆCC [40] detect mainly black-listed imports691

related non-deterministic APIs using a syntactical approach. Besides, they can detect non-692

deterministic map iterations by AST traversal with minimal syntactic reasoning. Signature of693

invoked functions can also be black-listed instead of imports [32]. These tools and frameworks694

inherently limit API usage, sensibly reducing the benefits of adopting a GPL even when the695

ECOOP 2023

16:22 Information Flow Analysis for Detecting Non-Determinism in Blockchain

CALL
Time.Now()

Line 2

CALL
.Unix(…)

Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
Time.Now()

Line 2

CALL
.Unix(…)

Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
rand.Intn(5)

Line 5

CALL
Time.Now()

Line 7

CALL
strconv.Itoa(…)

Line 5

ASSIGNAMENT
objBoleto.CodigoBarra

Line 5

ASSIGNAMENT
notExpiredDate

Line 7

CALL
notExpiredDate.Format(…)

Line 8

ASSIGNAMENT
objBoleto.DataVencimento

Line 8

CALL
json.Marshal(…)

Line 12

ASSIGNAMENT
boletoAsBytes

Line 12

CALL
APIstub.PutState(…)

Line 13

CALL
Time.Now()

Line 2

CALL
.Unix(…)

Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

Figure 12 Simplified view of implicit flow computed by GoLiSA during the analysis of Figure 1

code poses no harm to the blockchain. The problem of detecting non-determinism has also696

been covered for parallel applications, suggesting that non-determinism is “most often the697

result of a mistake on the part of the programmer” [13].698

7 Conclusion699

In this paper, we proposed a flow-based approach for detecting critical non-deterministic700

behaviors, namely the ones affecting the blockchain state. Our proposal has been implemented701

in GoLiSA, a static analyzer for Go applications. To the best of our knowledge, GoLiSA is the702

first semantic-based static analyzer for blockchain software able to detect non-deterministic703

behaviors, with an extremely low false alarm prevision. In the context of smart contracts, the704

proposed approach is placed in an off-chain architecture, i.e., the analysis is done before smart705

contracts are deployed in the blockchain, and it is not mandatory. As future work, besides706

supporting the missing Go features discussed in Section 5 to enhance the analysis coverage,707

we plan to test GoLiSA in an on-chain architecture [35], making the non-determinism checker708

part of the consensus protocol, with the goal of keeping the code stored within the blockchain709

deterministic. The analysis could be enriched with a context-sensitive flow reconstructor,710

such as BackFlow [21], that starting from the results of a information flow engine, reconstructs711

how the information flows inside the program and builds paths connecting sources to sinks.712

Moreover, we have focused on the non-determinism problem, but our future research will713

address the problem of detecting other and equally critical vulnerabilities that can affect714

blockchain software written using general-purpose languages, such as numerical overflow.715

Our proposal follows a fully static approach, justified by the fact that we aim at proving716

the determinism of blockchain software, regardless of the possible executions. However,717

even if the evaluation on the selected benchmark shows optimal results, the risk of getting718

false alarms analyzing other applications is still present, being our approach based on719

over-approximating possible executions via abstract interpretation. In future works, hybrid720

approaches between static and dynamic analyses will be investigated to get the benefits of721

both techniques.722

Finally, in order to assess the effectiveness of our proposal, we have conducted our723

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:23

evaluation on Hyperledger Fabric blockchain software, mostly because it is the most popular724

framework among those cited in the paper. To give a larger coverage to GoLiSA of the725

blockchain software that can analyze, the next step will be to design significant benchmarks726

also for the other frameworks, such as Tendermint core and Cosmos SDK, on which we can727

experiment our static analyzer.728

References729

1 Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language,730

1994. Accessed: 01-12-2022. URL: https://www.cs.cornell.edu/courses/cs711/2005fa/731

papers/andersen-thesis94.pdf.732

2 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,733

Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,734

Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith735

Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco,736

and Jason Yellick. Hyperledger Fabric: A Distributed Operating System for Permissioned737

Blockchains. In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,738

Portugal, April 23-26, 2018, pages 30:1–30:15. ACM, 2018. doi:10.1145/3190508.3190538.739

3 A. M. Antonopoulos. Mastering Bitcoin: Programming the Open Blockchain. O’Reilly, 2nd740

edition, 2017.741

4 A. M. Antonopoulos and G. Wood. Mastering Ethereum: Building Smart Contracts and Dapps.742

O’Reilly, 2018.743

5 Sotirios Brotsis, Nicholas Kolokotronis, Konstantinos Limniotis, Gueltoum Bendiab, and744

Stavros Shiaeles. On the security and privacy of hyperledger fabric: Challenges and open745

issues. In 2020 IEEE World Congress on Services (SERVICES), pages 197–204, 2020. doi:746

10.1109/SERVICES48979.2020.00049.747

6 E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD thesis,748

2016.749

7 Ethan Buchman. Byzantine Fault Tolerant State Machine Replication in Any Programming750

Language. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,751

PODC ’19, page 546, New York, NY, USA, 2019. Association for Computing Machinery.752

8 V. Buterin. Ethereum Whitepaper, 2013. Available at https://ethereum.org/en/753

whitepaper/.754

9 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash Pourdamghani. Probabilistic755

Smart Contracts: Secure Randomness on the Blockchain. In IEEE International Conference756

on Blockchain and Cryptocurrency, ICBC 2019, Seoul, Korea (South), May 14-17, 2019, pages757

403–412. IEEE, 2019. doi:10.1109/BLOC.2019.8751326.758

10 Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.759

11 Dorothy E. Denning. A Lattice Model of Secure Information Flow. Commun. ACM, 19(5):236–760

243, 1976. doi:10.1145/360051.360056.761

12 ebuchman. Cosmos-SDK Vulnerability Retrospective: Security Advisory Jackfruit,762

October 12, 2021, 2021. Accessed: 01-12-2022. URL: https://forum.cosmos.network/t/763

cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/764

5349.765

13 Perry A. Emrath and David A. Padua. Automatic Detection of Nondeterminacy in Parallel766

Programs. In Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel767

and Distributed Debugging, PADD ’88, page 89–99, New York, NY, USA, 1988. Association768

for Computing Machinery. doi:10.1145/68210.69224.769

14 Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Ciprian Spiridon, and Fausto Spoto.770

Boolean Formulas for the Static Identification of Injection Attacks in java. In Logic for771

ECOOP 2023

https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/SERVICES48979.2020.00049
https://doi.org/10.1109/SERVICES48979.2020.00049
https://doi.org/10.1109/SERVICES48979.2020.00049
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1109/BLOC.2019.8751326
https://doi.org/10.1145/360051.360056
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://doi.org/10.1145/68210.69224

16:24 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-772

20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in773

Computer Science, pages 130–145. Springer, 2015. doi:10.1007/978-3-662-48899-7_10.774

15 Pietro Ferrara. A generic framework for heap and value analyses of object-oriented programming775

languages. Theor. Comput. Sci., 631:43–72, 2016. doi:10.1016/j.tcs.2016.04.001.776

16 Pietro Ferrara, Elisa Burato, and Fausto Spoto. Security Analysis of the OWASP Benchmark777

with Julia. In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17), Venice,778

Italy, January 17-20, 2017, volume 1816 of CEUR Workshop Proceedings, pages 242–247.779

CEUR-WS.org, 2017. http://ceur-ws.org/Vol-1816/paper-24.pdf Accessed: 01-12-2022.780

17 Pietro Ferrara, Amit Kr Mandal, Agostino Cortesi, and Fausto Spoto. Static analysis for781

discovering IoT vulnerabilities. Int. J. Softw. Tools Technol. Transf., 23(1):71–88, 2021.782

doi:10.1007/s10009-020-00592-x.783

18 Pietro Ferrara and Luca Negrini. SARL: Oo framework specification for static analysis. In784

Maria Christakis, Nadia Polikarpova, Parasara Sridhar Duggirala, and Peter Schrammel,785

editors, Software Verification, pages 3–20, Cham, 2020. Springer International Publishing.786

19 Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi. Static analysis for787

dummies: experiencing lisa. In Lisa Nguyen Quang Do and Caterina Urban, editors,788

SOAP@PLDI 2021: Proceedings of the 10th ACM SIGPLAN International Workshop on789

the State Of the Art in Program Analysis, Virtual Event, Canada, 22 June, 2021, pages 1–6.790

ACM, 2021. doi:10.1145/3460946.3464316.791

20 Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Tailoring Taint Analysis to GDPR. In Privacy792

Technologies and Policy - 6th Annual Privacy Forum, APF 2018, Barcelona, Spain, June793

13-14, 2018, Revised Selected Papers, volume 11079 of Lecture Notes in Computer Science,794

pages 63–76. Springer, 2018. doi:10.1007/978-3-030-02547-2_4.795

21 Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Backflow: Backward context-sensitive796

flow reconstruction of taint analysis results. In Verification, Model Checking, and Abstract797

Interpretation, pages 23–43, Cham, 2020. Springer International Publishing.798

22 Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Static Privacy Analysis by Flow Reconstruction799

of Tainted data. Int. J. Softw. Eng. Knowl. Eng., 31(7):973–1016, 2021. doi:10.1142/800

S0218194021500303.801

23 Luca Foschini, Andrea Gavagna, Giuseppe Martuscelli, and Rebecca Montanari. Hyperledger802

Fabric Blockchain: Chaincode Performance Analysis. In 2020 IEEE International Conference803

on Communications, ICC 2020, Dublin, Ireland, June 7-11, 2020, pages 1–6. IEEE, 2020.804

doi:10.1109/ICC40277.2020.9149080.805

24 Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In 1982 IEEE806

Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20.807

IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.808

25 Joseph A. Goguen and José Meseguer. Unwinding and Inference Control. In Proceedings of809

the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 29 -810

May 2, 1984, pages 75–87. IEEE Computer Society, 1984. doi:10.1109/SP.1984.10019.811

26 Hyperledger. Hyperledger fabric documentation. https://hyperledger-fabric.readthedocs.812

io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric.813

27 Tendermint Inc. What is Tendermint: A Note on Determinism, 2022.814

Accessed: 01-12-2022. URL: https://github.com/tendermint/tendermint/blob/815

7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.816

md#a-note-on-determinism.817

28 Uday P. Khedker and Bageshri Karkare. Efficiency, precision, simplicity, and generality818

in interprocedural data flow analysis: Resurrecting the classical call strings method. In819

Compiler Construction, pages 213–228, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.820

doi:10.1007/978-3-540-78791-4_15.821

29 J. Kwon. Tendermint: Consensus without mining. 2014.822

30 J. Kwon and E. Buchman. Cosmos whitepaper, 2019.823

https://doi.org/10.1007/978-3-662-48899-7_10
https://doi.org/10.1016/j.tcs.2016.04.001
http://ceur-ws.org/Vol-1816/paper-24.pdf
https://doi.org/10.1007/s10009-020-00592-x
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1109/ICC40277.2020.9149080
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://doi.org/10.1007/978-3-540-78791-4_15

L. Olivieri L. Negrini V. Arceri F. Tagliaferro P. Ferrara A. Cortesi F. Spoto 16:25

31 kzhry. Chaincode Analyzer, 2021. Accessed: 01-12-2022. URL: https://github.com/824

hyperledger-labs/chaincode-analyzer.825

32 Penghui Lv, Yu Wang, Yazhe Wang, and Qihui Zhou. Potential Risk Detection System826

of Hyperledger Fabric Smart Contract based on Static Analysis. In IEEE Symposium on827

Computers and Communications, ISCC 2021, Athens, Greece, September 5-8, 2021, pages 1–7.828

IEEE, 2021. doi:10.1109/ISCC53001.2021.9631249.829

33 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Available at https://bitcoin.830

org/bitcoin.pdf, 2008.831

34 Luca Negrini. A generic framework for multilanguage analysis. PhD thesis, Universitá Ca’832

Foscari Venezia, 2023.833

35 Luca Olivieri, Fausto Spoto, and Fabio Tagliaferro. On-Chain Smart Contract Verification over834

Tendermint. In Financial Cryptography and Data Security. FC 2021 International Workshops835

- CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021, Revised Selected836

Papers, volume 12676 of Lecture Notes in Computer Science, pages 333–347. Springer, 2021.837

doi:10.1007/978-3-662-63958-0_28.838

36 Luca Olivieri, Fabio Tagliaferro, Vincenzo Arceri, Marco Ruaro, Luca Negrini, Agostino Cortesi,839

Pietro Ferrara, Fausto Spoto, and Enrico Talin. Ensuring determinism in blockchain software840

with golisa: an industrial experience report. In Laure Gonnord and Laura Titolo, editors, SOAP841

’22: 11th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis,842

San Diego, CA, USA, 14 June 2022, pages 23–29. ACM, 2022. doi:10.1145/3520313.3534658.843

37 Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an abstract interpretation844

perspective. Mit Press, 2020.845

38 A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE Journal on846

Selected Areas in Communications, 21(1):5–19, 2003. doi:10.1109/JSAC.2002.806121.847

39 Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural data flow analysis. New848

York University. Courant Institute of Mathematical Sciences . . . , 1978.849

40 sivachokkapu. Revivecc, 2021. Accessed: 01-12-2022. URL: https://github.com/850

sivachokkapu/revive-cc.851

41 Fausto Spoto. A Java Framework for Smart Contracts. In Financial Cryptography and Data852

Security - FC 2019 International Workshops, VOTING and WTSC, St. Kitts, St. Kitts and853

Nevis, February 18-22, 2019, Revised Selected Papers, volume 11599 of Lecture Notes in854

Computer Science, pages 122–137. Springer, 2019. doi:10.1007/978-3-030-43725-1_10.855

42 Fausto Spoto. Enforcing Determinism of Java Smart Contracts. In Financial Cryptography and856

Data Security - FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC,857

Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected Papers, volume 12063 of Lecture858

Notes in Computer Science, pages 568–583. Springer, 2020. doi:10.1007/978-3-030-54455-3\859

_40.860

43 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:861

effective taint analysis of web applications. In Proceedings of the 2009 ACM SIGPLAN862

Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,863

Ireland, June 15-21, 2009, pages 87–97. ACM, 2009. doi:10.1145/1542476.1542486.864

44 Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting nondeterministic payment bugs865

in ethereum smart contracts. Proc. ACM Program. Lang., 3(OOPSLA):189:1–189:29, 2019.866

doi:10.1145/3360615.867

45 Kazuhiro Yamashita, Yoshihide Nomura, Ence Zhou, Bingfeng Pi, and Sun Jun. Potential868

Risks of Hyperledger Fabric Smart Contracts. In 2019 IEEE International Workshop on869

Blockchain Oriented Software Engineering (IWBOSE), pages 1–10, 2019. doi:10.1109/IWBOSE.870

2019.8666486.871

ECOOP 2023

https://github.com/hyperledger-labs/chaincode-analyzer
https://github.com/hyperledger-labs/chaincode-analyzer
https://github.com/hyperledger-labs/chaincode-analyzer
https://doi.org/10.1109/ISCC53001.2021.9631249
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-662-63958-0_28
https://doi.org/10.1145/3520313.3534658
https://doi.org/10.1109/JSAC.2002.806121
https://github.com/sivachokkapu/revive-cc
https://github.com/sivachokkapu/revive-cc
https://github.com/sivachokkapu/revive-cc
https://doi.org/10.1007/978-3-030-43725-1_10
https://doi.org/10.1007/978-3-030-54455-3_40
https://doi.org/10.1007/978-3-030-54455-3_40
https://doi.org/10.1007/978-3-030-54455-3_40
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/3360615
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1109/IWBOSE.2019.8666486

	1 Introduction
	2 Preliminaries: Go and Blockchain
	2.1 Blockchain Environments
	2.2 Blockchain Consensus

	3 Non-Deterministic Behaviors in Blockchain Software: Sources and Sinks
	3.1 Sources of Non-Determinism
	3.2 Sinks of Non-Determinism
	3.2.1 Hyperledger Fabric APIs for Go
	3.2.2 Tendermint Core APIs for Go
	3.2.3 Cosmos SDK APIs

	4 Information Flow Analysis for Non-Determinism Detection
	4.1 An Overview on Information Flow
	4.1.1 Non-Interference
	4.1.2 Taint Analysis

	4.2 The GoLiSA Static Analyzer
	4.3 GoLiSA for Non-Deterministic Behaviors Detection
	4.4 Detection of Sources and Sinks in GoLiSA

	5 Experimental Evaluation
	5.1 Quantitative Evaluation
	5.1.1 Comparison

	5.2 Qualitative Evaluation
	5.2.1 Explicit Flow: the Boleto Contract
	5.2.2 Implicit Flow: Cosmos SDK v.43

	5.3 Limits

	6 Related Work
	7 Conclusion

