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Whole-value analysis by abstract
interpretation

Luca Negrini*

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice,
Venice, Italy

Value analysis is the task of understanding what concrete values a program might
compute for each variable or memory region. Historically, research focused
mostly on numerical analysis (i.e., value analysis of programs manipulating
numeric values), while string analyses have received wider attention in the
last two decades. String analyses present a key challenge: reasoning about
strings entails reasoning about integer values either used as arguments to string
operations (e.g., evaluating a substring) or returned by string operations (e.g.,
calculating the length of a string). Traditionally, string analyses were formalized
with respect to a specific numeric analysis, usually considering constant values or
their possible ranges, tailoring definitions, semantic proofs, and implementations
to that particular combination, hence hindering the adoption of the analyses in
different contexts. This study presents a modular framework to define whole-
value analyses (that is, combinations of numeric analyses, string analyses, and
possibly other value types computed by a program) by Abstract Interpretation.
The framework defines information exchange between the different analyses in
the form of abstract constraints, allowing each analysis to perform given only a
generic and analysis-independent description of the abstract values computed
by other analyses. Adopting such a framework (i) ensures that soundness
proofs are still valid when changing the combination of domains used, and (ii)
eases implementation and experimentation of different combinations of value
analyses, simplifying comparisons between different scientific contributions and
augmenting the set of domains an abstract interpreter can use to analyze a
program.
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1 Introduction

Static analysis allows one to verify properties of computer programs before they
are executed. This is important for proving that programs do not behave incorrectly
at execution time, leading to a runtime error or computing the wrong results. Static
analysis can also provide evidence of illicit information flows, a topic highly appreciated
by companies that write software dealing with sensitive data or that is exposed to external
users’ interaction. To have guarantees about bug and vulnerability discovery, static analysis
must go beyond simple and naïve matching of well-known patterns leading to errors
and vulnerabilities (so-called code smells). Instead, formal methods such as Abstract
Interpretation (Cousot and Cousot, 1977; Cousot, 2021) must be used.

Abstract Interpretation is a mathematical framework to soundly reason on
program semantics. Proving non-trivial properties of such semantics is, in general,
undecidable (Rice, 1953). Abstract Interpretation overcomes this by reasoning on a
sound over-approximation of the uncomputable real semantics, referred to as concrete,
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transforming it into so-called abstract semantics that is instead
computable. While approximation recovers computability, it does
come with the cost of imprecision, as more executions are
considered with respect to the actual ones exhibited by the
program. However, thanks to the over-approximation, properties
proven to hold for the abstract semantics are guaranteed to
hold also for the concrete one. The main idea behind abstract
interpretation is to define the concrete semantics as the fixpoint
of a monotone function. Such a function can then be abstracted
to a simpler one that has to be proven sound. In practice, the
monotone function is defined inductively on the syntax offered by
the programming language. Such a definition allows the framework
(i.e., the formula) to be parametric with respect to the language
semantics in a way that does not require proving the correctness
of the whole abstraction every time. Instead, researchers define the
meaning of each instruction they want to analyze (e.g, by defining
its big-step semantics), and they later abstract that meaning with an
abstract domain that models some of its properties. For instance,
in Cousot and Cousot (1977), numeric values were abstracted as
intervals (thus preserving their ranges) and the semantics of the
language with interval arithmetics.

Several abstract domains have been proposed over the years,
each with a different cost-to-precision trade-off and targeting
different kinds of values and properties: numeric values (Cousot
and Cousot, 1977; Logozzo and Fähndrich, 2010; Miné, 2006;
Cousot and Halbwachs, 1978), string values (Costantini et al., 2015;
Negrini et al., 2021; Christensen et al., 2003b), types (Cousot, 1997),
dependencies (Ernst et al., 2015; Cohen, 1977), and many more.
Numerical abstractions have been the first to be studied, as proving
numerical properties is pivotal in safety-critical contexts. More
recently, string analysis gained notable traction due to the many
uses strings find in programming languages. While some of these
domains can perform naturally in a standalone setting (e.g., type
inference can produce expression types by only relying on the types
of sub-expressions), cooperation between domains is sometimes
necessary. Consider, for instance, the following snippet of Go code:

start := 2
end := 7
str := "Go is a programming language"
sub := str[start : end]

reasoning on the value of sub at line 4, that is built through a
substring operation, entails reasoning on both strings and integers.
In fact, while most numeric domains have been formalized in
isolation due to the nature of the safety-critical programs they
were aimed at, string domains are defined in combination with
a numeric domain of choice. Typically, such a domain tracks
constant values (e.g., as in Costantini et al., 2015) or intervals
modeling their ranges (e.g., as in Negrini et al., 2021). While
these explicit combinations are enough to understand the article’s
contribution, they are often limiting when one wants to reuse the
same domain in a different combination. Consider, for instance, the
PREFIX domain (Costantini et al., 2015), tracking definite prefixes
of string values. The authors define the semantics of substring
with respect to the integer values of the start and end indices.
If one were to reuse the domain in a more precise setting, e.g.,
in conjunction with the INTERVAL domain (Cousot and Cousot,
1977), the definition has to be lifted by applying the semantics to all

valid pairs of indices. While in this case the lift is straightforward,
it might not be if the string domain is more elaborate (e.g., if it uses
automata as in Arceri et al., 2020). Moreover, lifting the semantics
naïvely poses the threat of compromising the soundness of the
analysis.

1.1 Contribution

This study presents a framework for whole-value analyses, that
is, analyses aiming to model all values computed by a program
regardless of their type. Specifically, the framework is an instance
of the open product (Cortesi et al., 2013), and allows client abstract
domains for individual data types (e.g., integers, floats, strings,
. . . ) to exchange information modularly, without tailoring the
communication to specific domain combinations. The exchange
happens by means of abstract constraints that one domain can
obtain from the others in the form of (in-)equalities that hold in
the current state. Since the format is generic, one can add new
domains to the framework or swap one of them with a more
refined one without the others having to redefine or lift their
semantics. We then show how abstract domains’ semantics can
be expressed in terms of such constraints whenever a multi-type
expression (i.e., an expression whose sub-expressions and result
are of heterogeneous types — e.g., Java’s substring) needs to
be evaluated. The strength of the framework is both theoretical
and practical: domains adopting this framework (i) have their
abstract semantics proven sound independently from the domain
they will be combined with, and (ii) can be plugged in with different
abstract domains seamlessly, with no code modifications. We then
implement the framework in LiSA (Negrini et al., 2023a), and
compare the results of whole-value analyses with and without the
presented constraint-based framework to assess its precision. In
summary:

• we define a novel constraint-based framework for whole-value
analyses by abstract interpretation, proving its soundness;

• we recast the definition of some widespread abstract domains’
semantics to fit our framework;

• we provide an open-source implementation of the framework
in LiSA (Negrini et al., 2023a);

• we compare the analysis results of whole-value analyses with
and without the proposed framework.

1.2 Paper structure

Section 2 introduces the necessary notations and notions that
will be used throughout the study. Section 3 defines the IMP

language, a minimalistic yet expressive imperative language that
we will use for the formalization of the framework, together
with its semantics. Section 4 defines the split state, a rewriting
of the concrete state and semantics of IMP that simplifies the
definition of abstract interpretations without introducing any loss
of precision. Section 5 formalizes the framework. Section 6 reports
our instantiation of the framework with some notable client
abstract domains. Section 7 reports our implementation in LiSA
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and our experiments to assess the precision of the framework.
Section 8 discusses related work. Section 9 concludes and discusses
future works. Appendix A reports the proofs of all lemmas and
theorems.

2 Preliminaries

2.1 Sets

A set X is a possibly infinite collection of elements, written
X = {x0, x1, . . . }, where ∅ is the set containing no elements. A set
can also be defined in terms of a predicate φ, causing all elements
satisfying φ to be part of the set (i.e., X = { x | φ(x) }). We write
x ∈ X to denote that x is part of the set X. |X| is the cardinality
of X, that is, the number of elements it contains, and ℘(X) is the
powerset of X, that is, the set containing all subsets of X. Given two
sets X and Y , X ⊆ Y is the inclusion relation between X and Y ,
X∪Y is the set union between X and Y , X∩Y is the set intersection
between X and Y , X \ Y is the set difference between X and Y , and
X × Y is the Cartesian product between X and Y , that is, the set
{ (x, y) | x ∈ X ∧ y ∈ Y }.

2.2 Functions

A function f :X → Y is a subset of the Cartesian product X×Y
such that �(x, y), (z, w) ∈ f : x = z ∧ y 	= w. The set X is called
domain (denoted as dom(f )), the set Y is called co-domain (denoted
as codom(f )), and f (x) is the image of x in f , that is, (x, f (x)) ∈ f .
Similarly to sets, a function can be defined either as a set of pairs
{(x0, y0), (x1, y1), . . . } or using a formula �, written f (x) = �(x),
indicating that f = {(x0, �(x0)), (x1, �(x1)), . . . }. Function id is
the identity function, that is, id(x) = x. Finally, given a function
f :X → Y , we denote with f+ its additive lift, that is, the function
f+ :℘(X) → ℘(Y) defined as f+(S) = { (s, f (s)) | s ∈ S }.

2.3 Strings

A string σ is a sequence of characters σ0 . . . σn, σi ∈ �, with
length |σ | = n + 1. We denote as �∗ the set of all possibly
unbounded strings. Given a string σ ∈ �∗ and i, j ∈ N, 0 ≤ i ≤ j <

|σ |, we denote the subsequence σi . . . σj by σ [i : j]. Instead, given
two strings σ = σ0 . . . σn, σ ′ = σ ′0 . . . σ ′k ∈ �∗, we write σ ′ � σ if
σ ′ is a substring of σ , that is, if ∃i, j ∈ N, 0 ≤ i ≤ j < |σ |, j − i =
k : σ [i : j] = σ ′. Furthermore, we write σ ′ �p σ if σ ′ is a prefix of
σ , that is, if ∃ k < |σ | ∧ σ [0 : k] = σ ’, and σ ′ �s σ if σ ′ is a suffix
of σ , that is, if ∃ k < |σ | ∧ σ [n− k : n] = σ ′.

2.4 Ordered structures

A set X with a partial ordering relation �X ⊆ X × X is a
poset, denoted by 〈X,�X〉. If a poset has a bottom element ⊥X
and is closed under finitary applications of the least upper bound
(lub, �X) operator of X, it is called a complete partial order (cpo),
denoted as 〈X,�X ,�X ,⊥X〉. Moreover, a lattice 〈X,�X ,�X ,�X〉 is

a poset having a minimum element (bottom,⊥X ∈ X), a maximum
element (top,�X ∈ X) and closed under finitary applications of the
least upper bound (lub, �X) and the greatest lower bound (glb, �X)
operators. A complete lattice is closed under arbitrary lub and glb,
so that

⊔
Y ∈ X and

�
Y ∈ X, for all Y ⊆ X, and it is denoted

as 〈X,�X ,�X ,�X ,�X ,⊥X〉. Provided there is no ambiguity, we
will omit subscripts of each operator for clarity. Complete lattices
can be derived from other structures. For instance, given a set
X, 〈℘(X),⊆,∪,∩, X, ∅〉 is a complete lattice since ⊆ is a partial
ordering relation, ∪ and ∩ are closed with respect to ℘(X), and
∀Y ∈ ℘(X) : ∅ ⊆ Y ⊆ X. By duality, 〈℘(X),⊇,∩,∪, ∅, X〉 is
also complete. Moreover, given 〈X,�,�,�,�,⊥〉 and a set Y , the
functional lift (Cousot and Cousot, 1979) of X with respect to Y
is the complete lattice 〈Y → X, �̇, �̇, �̇, ⊥̇, �̇〉 of total functions
Y → X, that is, of functions defined on all elements of Y . Lattice
operators are defined as point-wise applications of operators over
X on all y ∈ Y . Lastly, given a finite set of complete lattices 〈Yi,�Yi

,�Yi ,�Yi ,⊥Yi ,�Yi 〉, i ∈ � ⊂ N, their Cartesian product (Cousot,
2021) is the complete lattice 〈×∑

i∈� Yi,
×�,

×�,
×�,

×⊥,
×�〉, where

lattice operators are component-wise applications of the operators
over each Yi. Given a poset 〈X,�X〉, an increasing chain C ⊆ X
is a possibly infinite sequence of elements x0, x1, . . . of X such that
x0 �X x1 �X . . . .

2.5 Abstract interpretation

Abstract Interpretation (Cousot and Cousot, 1977; Cousot,
2021) is a theoretical framework for sound reasoning on semantic
properties of a program, establishing a correspondence between
the semantics of a program, called concrete semantics, and an
approximation of it, called abstract semantics. Let C and A be
complete lattices, a pair of functions α :C → A and γ :A →
C forms a Galois Connection between C and A, written 〈C,�C
〉 −−→←−−α

γ 〈A,�A〉, if ∀ c ∈ C, a ∈ A :α(c) �A a ⇔ c �C γ (a).
Equivalently, the Galois Connection exists if α ◦ γ is reductive (i.e.,
if ∀ a ∈ A : α ◦ γ (a) �A a), and γ ◦ α is extensive (i.e., if ∀ c ∈
C : c �C γ ◦ α(c)). In addition, if α ◦ γ = id, then α and γ form
a Galois Embedding, written 〈C,�C〉 −−→−→←−−−

α

γ 〈A,�A〉, where no
two abstract elements have the same concretization. Furthermore,
if also γ ◦α = id, then α and γ form a Galois Isomorphism, written
〈C,�C〉 −−→−→←←−−−

α

γ 〈A,�A〉, where A is simply a reshaping of C and
no abstraction (i.e., loss of precision) happens. Note that Abstract
Interpretation can be employed also when a Galois Connection
does not exist: in fact, it is sufficient that C and A are complete
partial orders, and that a monotone concretization γ exists.

2.6 Soundness

Given 〈C,�C〉 −−→←−−α
γ 〈A,�A〉, a concrete function f :C → C is,

in general, not computable. Hence, a function f 
 :A → A that must
correctly approximate the function f is needed. If so, we say that the
function f 
 is sound. Given 〈C,�C〉 −−→←−−α

γ 〈A,�A〉 and a concrete
function f :C → C, an abstract function f 
 :A → A is sound with
respect to f if ∀c ∈ C : α(f (c)) �A f 
(α(c)), or equivalently
∀a ∈ A : f (γ (a)) �C γ (f 
(a)). Note that the latter relation can
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FIGURE 1

Syntax of the IMP language.

be used to prove soundness even when a Galois Connection does
not exist.

2.7 Abstract domains

In the Abstract Interpretation framework, abstractions are
defined through so-called abstract domains. These are composed
by a partial order 〈X,�X〉, possibly extended to a complete partial
order, a lattice, or a complete lattice, an upper bound operator �X
on X, a bottom element ⊥X ∈ X a widening operator ∇X that
over-approximates �X and ensures the convergence on increasing
chains, an abstract transformer �st� :X → X for evaluating
statements, and an abstract transformer �b� :X → X for traversing
conditions. The purpose of the transformers is to evolve an instance
of the domain according to the semantics of the statement st to be
executed, and to refine an instance of the domain assuming that
a condition b holds. When a domain is non-relational, that is, it
does not maintain explicit relations between program variables,
a third transformer �e� :X → V usually exists, evaluating an
expression e to an abstract value v ∈ V , with 〈V ,�V ,�V ,⊥V 〉
being the complete partial order of abstract values (possibly also
a lattice or a complete lattice). For instance, the domain of intervals
〈ID → I, �̇, �̇, �̇, ⊥̇, �̇〉 uses functions as abstract elements, but
evaluates expressions to single intervals.

3 The Imp language

We begin by defining the target programming language that
we aim to analyze: IMP. IMP, whose syntax is visible in Figure 1, is
a simple imperative language that features arithmetic expressions
(AE, where ⊕ ∈ {+,−, ∗, /} with / being the integer division),
Boolean expression (BE, where � ∈ {==, ! =, <, <=, >, >=}),
and string expressions (SE). It then features variable assignments to
integers, strings, and Booleans, branching and looping. Note that,
despite its simplicity, it features multi-type expressions len(s),
a � a, s == s, contains(s, s), and substr(s, a, a) that
require mixing values from different domains to be computed (i.e.,
substr(s, a, a) requires both strings and integers to be computed,
while a � a, s == s, len(s) and contains(s, s) can be fully
computed using the input values — integers or strings — but have

output of a different type — integers or Booleans). IMP programs
need to be well-typed to be valid: each variable defined and used
throughout the program must be assigned to values of a single data
type.

3.1 Concrete state and semantics

Expressions of the IMP language evaluate to values in the set
VAL � Z ∪ �∗ ∪ B ∪ {⇑}, that is, to integers, strings, Booleans
({true,false}), or to a special value ⇑ denoting an error in the
evaluation. Program memories μ ∈ M : ID → VAL map program
variables in the set ID to their values in VAL. Abusing notation,
the set M contains a special memory ⇑ produced after invalid
computations. Function �st� :M → M defines the semantics of
each statement in terms of the effect it has on the program memory
it is executed on. Expression evaluation is instead defined, abusing
notation, through the function �e� :M → VAL that computes
the value of the expression given the values of each variable. The
semantics of IMP statements and expressions is standard, and it
is thus not fully specified: in the following, we only report the
semantics of multi-type expressions in a big-step fashion. Note that
both �st� and �e� yield ⇑ if the semantics of any sub-expression
appearing in their argument evaluates to ⇑.

�s�μ = σ

�len(s)�μ = |σ | (3.1)

�a1�μ = n1 �a2�μ = n2

�a1 � a2�μ = n1 � n2
(3.2)

�s1�μ = σ1 �s2�μ = σ2

�s1 == s2�μ = σ1 == σ2
(3.3)

�s1�μ = σ1 �s2�μ = σ2 σ2 � σ1

�contains(s1, s2)�μ = true
(3.4)

�s1�μ = σ1 �s2�μ = σ2 σ2 	� σ1

�contains(s1, s2)�μ = false
(3.5)
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�s�μ = σ �a1�μ = i �a2�μ = j 0 ≤ i ≤ j < |σ |
�substr(s, a1, a2)�μ = σ [i : j]

(3.6)

�s�μ = σ �a1�μ = i �a2�μ = j i < 0 ∨ j ≥ |σ | ∨ i > j

�substr(s, a1, a2)�μ = ⇑
(3.7)

Intuitively, Equation 3.1 shows that len returns the
number of characters in its input. Comparisons on both
integers (Equation 3.2) and strings (Equation 3.3) simply apply
the comparisons over the literals obtained through recursive
evaluation of the arguments.The semantics of contains is
partitioned according to its output: Equation 3.4 yields true if the
second argument is contained in the first one, while Equation 3.5
yields false if it is not. Finally, substr returns either (i) the
substring of its first argument delimited by its second and third
ones as shown in Equation 3.1, or (ii) an evaluation error if the
bounds are invalid, as visible in Equation 3.1.

As usual in Abstract Interpretation, the concrete semantics
is lifted to the collecting semantics by using sets of possible
program memories. Specifically, instead of considering a single
memory, accounting for an individual program execution, the
collecting semantics considers possibly infinite sets of memories,
describing possibly infinite sets of executions. In this setting, the
semantics of statements and expressions are defined as the additive
lift of the concrete ones. The statement collecting semantics
�st�+ :℘(M) → ℘(M) is thus defined as �st�+M � { �st�μ | μ ∈
M }, while the expression collecting semantics �e�+ :℘(M) →
℘(VAL) is defined as �e�+M � { �e�μ | μ ∈ M }. Lastly, note that
sets of program memories are elements of the complete powerset
lattice 〈℘(M),⊆,∪,∩, ∅,M〉.

4 The split state

The collecting semantics of IMP programs defined in Section 3
provides information on all concrete executions of a given program,
but it is not computable. Following the Abstract Interpretation
framework, we aim at abstracting the collecting semantics,
regaining decidability by introducing imprecision. While it is
possible to design an abstraction for the collecting semantics we
defined, it would be inconvenient for the purpose of this work.
We aim at building a framework where semantic computations are
delegated to several abstract domains operating on disjoint data
types: abstract states will thus be the conjunction of the states of
the individual domains. A direct abstraction would thus complicate
both definitions and proofs, since the conversion from a monolithic
state to a partitioned one would be necessary at each step.

Instead, we adapt the idea from Ferrara (2016) of introducing
an intermediate abstraction. In this section, we define a split state,
that is, a rewriting of the concrete state (i.e., program memories and
concrete semantics) into one where values of different data types
are stored in separate maps. This rewriting models the concrete
state in a way that is convenient for the remainder of this work,
simplifying definitions and proofs. Having separate memories
also facilitates modular abstractions: existing abstract domains
(both non-relational and relational) can be employed to abstract
individual sub-memories. Concretizations and transformers from
such domains can be used as-is, only redefining the evaluation

of expressions spanning multiple data types. Moreover, such
rewriting does not introduce imprecision: proving soundness and/or
completeness with respect to the split state is thus equivalent to
proving it with respect to the concrete state.

4.1 Split memories

We begin by partitioning program memories, grouping
program variables by the type of values they hold. Since IMP can
store values of three different types (integers, strings and Booleans),
we define three type-specific memories: μa ∈ A : ID → Z stores
the values of integer variables, μs ∈ S : ID → �∗ stores the values
of string variables, and μb ∈ B : ID → B stores the values of
Boolean variables. Split memories are μ ∈M � A× S × B, that
is, tuples composed by a function for each data type supported by
the language. Similarly to M, M also contains a special memory
⇑. In the following, we will refer to a split memory as either μ or
(μa, μs, μb). Being a rewriting of the concrete state, split memories
still refer to a single execution and should hold a single value for any
given variable. We thus consider only valid split memories, that is,
memories μ such that dom(μa)∩dom(μs) = dom(μa)∩dom(μb) =
dom(μs) ∩ dom(μb) = ∅. Split memories arbitrarily constructed
to hold information on the same variable in more than one type-
specific memory are ignored as they cannot arise when abstracting
a valid concrete memory.

Example 4.1. Consider the program memory μ =
{(x, 42), (y, “hello”), (z,true)}. The corresponding split memory
μ = (μa, μs, μb) is such that μa = {(x, 42)}, μs = {(y, “hello”)},
and μb = {(z,true)}. The means for commuting between the two
representations will be defined in the following section.

4.2 Abstraction and concretization

Before defining α and γ , used to convert concrete states into
split states and vice-versa, we introduce two operators that will be
used in their formalization: the restriction operator � and the union
operator !.

Definition 1 (Function restriction). Given a function f :K → V
and two sets X ⊆ K and Y ⊆ V , the function restriction operator �X

Y

:(K → V) → (X → Y) yields the function f �X
Y= { (x, f (x)) | x ∈

X ∧ f (x) ∈ Y }, that is, it restricts the input function f on the
elements in the desired domain and co-domain.

Definition 2 (Function union). Given two functions f :X → W
and g :Y → Z such that X ∩ Y = ∅, the function union operator
! :(X → W)× (Y → Z) → (X ∪ Y → W ∪ Z) yields the function
f!g = { (k, v) | (k ∈ dom(f )∧v = f (k))∨(k ∈ dom(g)∧v = g(k)) },
that is, it combines the input functions f and g. Since the domains
of f and g are disjoint, f ! g is also a function.

Intuitively, the above operators are used to split a function
into sub-functions and to join them back to the original function,
respectively, as shown in the following example.

Example 4.2. Consider the function f = {(1, 2), (2, 3), (3, 4)} and
the sets X = {1, 2} and Y = {2, 3}. Let X = dom(f ) \ X and Y =
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codom(f )\Y . The restriction of f to X and Y is f �X
Y= {(1, 2), (2, 3)},

and its complement is f �X
Y= {(3, 4)}. The union of the restriction

and its complement is f �X
Y ! f �Z\X

Z\Y= {(1, 2), (2, 3), (3, 4)} = f .

To avoid cluttering the notation, the superscript of � will
be omitted whenever it coincides with the domain of the whole
function. Note that both definitions can be trivially generalized to
a partitioning that generates an arbitrary number of sub-functions.
We are now in a position to define α and γ .

Definition 3 (Abstraction of concrete states). The abstraction
function α :℘(M) → ℘(M) converts sets of program memories
to sets of split memories by converting each individual memory
through the function α̇ :M→M. Formally:

α({μ1, . . . , μk}) = { α̇(μ) | μ ∈ {μ1, . . . , μk} } where

α̇(μ) = (μ �
Z

, μ �
�∗ , μ �

B
).

Lemma 4 (Monotonicity of α). Function α is monotone, that is,
∀M1, M2 ⊆ M : M1 ⊆ M2 "⇒ α(M1) ⊆ α(M2). Proof in
Appendix A.1.

Definition 5 (Concretization of split states). The concretization
function γ :℘(M) → ℘(M) converts sets of split memories to
sets of program memories by converting each individual memory
through the function γ̇ :M→M. Formally:

γ ({μ1, . . . , μk}) = { γ̇ (μ) | μ ∈ {μ1, . . . , μk} } where

γ̇ (μ) = μa ! μs ! μb.

Lemma 6 (Monotonicity of γ ). Function γ is monotone, that is,
∀M1, M2 ⊆ M : M1 ⊆ M2 "⇒ γ (M1) ⊆ γ (M2). Proof in
Appendix A.1.

Example 4.3. Consider again the program memory μ =
{(x, 42), (y, “hello”), (z,true)} from Example 4.1. The abstraction
μ = (μa, μs, μb) of such memory is computed by α̇ by partitioning
the co-domain. Specifically, μa = μ �

Z
= { (k, μ(k)) | k ∈

dom(μ) ∧ μ(k) ∈ Z } = {(x, 42)}. Similarly, μs = μ �
�∗ =

{(y, “hello”)} and μb = μ �
B
= {(z,true)}. Since the domains

of each type-specific memory are disjoint, the concretization of μ

through γ̇ simply joins the memories together, obtaining μ.

Lemma 7 (Invertibility of α and γ ). The composition of α and γ

corresponds to the identity function, that is, α ◦ γ = id. Moreover,
the composition of γ and α corresponds to the identity function,
that is, γ ◦α = id. Thus, α is the inverse of γ , and vice-versa. Proof
in Appendix A.1.

Both the abstraction and concretization functions thus proceed
by converting each input memory individually, where the
individual conversions partition the memory by data types in
the abstraction, and combines them back in the case of the
concretization. Since both functions are monotone and they
compose to the identity function (as shown in Appendix A.1), they

induce the Galois Isomorphism 〈℘(M),⊆〉 −−→−→←←−−−
α

γ 〈℘(M),⊆〉.

4.3 Split semantics of statements

Instead of specifying a custom semantics for the split state,
we take full advantage of the isomorphism. In fact, a well-known

property of Galois Connections (and thus of Isomorphisms) is that
the abstraction function yields the best possible abstraction of any
concrete element. This means that the split collecting semantics
of a statement can be computed in the concrete after applying γ ,
and then abstracted back to the split setting by α. Formally, the
collecting split statement semantics �st	+ :℘(M) → ℘(M) is
defined as �st	+ = α◦�st�+◦γ . Such a definition is always possible
within Abstract Interpretation, albeit not desirable: computability
is not recovered, as the undecidable concrete semantics is involved
in the computation. However, since the purpose of the split state
is to provide a more convenient starting point for successive
abstractions, uncomputability is not a concern. Similarly, we define
the split collecting semantics of expressions �e	+ :℘(M) →
℘(VAL) as �e	+ = �e�+ ◦ γ (here, α is not involved in the
computation since �e	+ produces concrete values that do not need
to be abstracted). Note that sets of split memories are elements of
the complete powerset lattice 〈℘(M),⊆,∪,∩, ∅,M〉.

While the presence of a Galois Isomorphism ensures that no
precision is lost when commuting between concrete and split
states, imprecision might still arise during computations in the
split semantics. We thus also have to prove the equivalence (i.e.,
soundness and completeness) of the split semantics with respect to
the concrete one. When two semantics f and f 
 are expressed in
fixpoint form, it is enough to show that α ◦ f = f 
 ◦ α to ensure
that α(lfp f ) = lfp f 
 (Cousot and Cousot, 1979), where lfp f is the
least fixpoint of the iterates of f . Instead, since both the concrete
and split semantics are defined in their big-step forms, we have to
prove that ∀ st ∈ STMT : �st�+ ◦ γ = γ ◦ �st	+.

Theorem 8 (Equivalence of concrete and split semantics). For
all sets of split memories M ⊆ M, statements st ∈ STMT,
and expressions e ∈ EXPR, both �st�+γ (M) = γ (�st	+M) and
�e�+γ (M) = �e	+M hold. Proof in Appendix A.2.

We thus conclude that the split state is a rephrasing of the
concrete state, with no loss of precision introduced either in the
conversion between the two or during the semantics computations
over the split state.

5 Constraint-based whole-value
analysis

By considering split states instead of concrete ones, we
start from a setting where there is a clear distinction between
variables holding integers (μa), ones holding strings (μs), and
ones holding Booleans (μb). We can thus exploit a combination
of existing domains in our framework, one abstracting each set
of variables. We then simply need to specify how these domains
can communicate to exchange information on values crossing type
boundaries. We thus assume that the integer part of the memory
μa is abstracted by an abstract domain A
, the string part of the
memory μs is abstracted by an abstract domain S
, and that the
Boolean part of the memory μb is abstracted by an abstract domain
B
. In the following, let X be an abstract domain in {A
,S
,B
},
abstracting the respective type-specific memory MX in {A,S ,B}.
We only require X to provide the minimum ingredients for
Abstract Interpretation:
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• it must form a partial order, denoted 〈X ,�X 〉, and should
provide an upper bound operator �X and a bottom element
⊥X ;

• it provides a widening operator ∇X (if not needed by the
domain itself, it can simply delegate to �X );

• it defines a monotone concretization function γX :X →
℘(MX );

• it defines abstract transformers for the statement semantics
�st�X and expression evaluation �e�X that are sound (i.e.,
they over-approximate what the collecting semantics would
compute on statements and expressions of the data type they
abstract).

Note that, while the existence of �e� is typical of non-relational
domains, relational ones that are to be employed in whole-value
analyses still need to produce an abstraction of an expression’s value
to provide to other domains. Thus, the framework is not limited to
non-relational domains only.

5.1 Abstract states

We define the states of our framework as a special instance of
the Cartesian product of the base domains.

Definition 9 (Abstract program memories). In our framework,
abstract program states are defined as μ
 ∈ M
 � A
 ⊗ S
 ⊗
B
, that is, as tuples of instances of the three domains. Here, ⊗
denotes the smash product (Arceri and Maffeis, 2017), that is, a
form of reduced product (Cortesi et al., 2013) where a bottom
element from one component is propagated to all others. Being a
Cartesian product (Section 2), operators over M
 are element-wise
applications of the ones over the sub-domains:

• (a

1, s
1, b


1) �M
 (a

2, s
2, b


2) ⇐⇒ a

1 �A
 a


2 ∧ s
1 �S


s
2 ∧ b

1 �B
 b


2;
• (a


1, s
1, b

1) �M
 (a


2, s
2, b

2) = (a


1 �A
 a

2, s
1 �S
 s
2, b


1 �B
 b

2);

• (a

1, s
1, b


1)∇M
 (a

2, s
2, b


2) = (a

1∇A
 a


2, s
1∇S
 s
2, b

1∇B
 b


2);

Note that, being built with a smash product (that is a special
instance of Cartesian product), M
 and its operators have the same
properties of the three sub-domains (i.e., �M
 is a partial order,
�M
 is an upper bound operator,⊥M
 is the bottom element, and
∇M
 is a widening operator). In the following, we will refer to an
abstract memory as either μ
 or (a
, s
, b
).

5.2 Concretization and abstract semantics

Before discussing how to define the semantics of our
framework, we first have to define how abstract states concretize
to split states, which is essential to prove soundness. As previously
mentioned, we assume γA
 :A
 → ℘(ID → Z), γS
 :S
 →
℘(ID → �∗), and γB
 :B
 → ℘(ID → B) to be monotone
functions, concretizing instances of A
, S
, and B
 to sets of
memories containing integers, strings, and Booleans, respectively.
Since our objective is to connect M
 to M, we equip our

framework with a function γM
 :M
 → ℘(M) by exploiting the
three provided concretizations.

Definition 10 (Concretization of abstract states). The
concretization function γM
 :M
 → ℘(M) converts an
abstract state to a set of split memories. Formally:

γM
 (μ
) = { (μa, μs, μb) | μa ∈ γA
 (a
) ∧ μs ∈ γS
 (s
) ∧ μb

∈ γS
 (b
) }.

Note that this definition is only possible since IMP programs
are well-typed: each variable will appear in the state of exactly
one domain, and each split memory is thus guaranteed to be
valid (i.e., the type-specific memories have disjoint domains). The
extension of this framework to programs that are not well-typed
is straightforward, as it just entails a new definition of γM
 .
We exclude this from our work since it would add unnecessary
complexity to all proofs.

Lemma 11 (Monotonicity of γM
 ). Function γM
 is monotone,
that is, ∀μ


1, μ

2 ⊆ M
 : μ



1 ⊆ μ



2 "⇒ γM
 (μ


1) ⊆ γM
 (μ

2).

Proof in Appendix A.3.

Example 5.1. Suppose that the framework is instantiated using
the numerical constant propagation abstraction, the string prefix
abstraction (Costantini et al., 2015), and the Boolean powerset
abstraction. Abstract states are thus 〈ID → Z�⊥⊗ID → �∗

⊥⊗ID →
℘(B)〉. Consider the state μ
 = (a
, s
, b
) where a
 = {(x, 42)},
s
 = {(y, “foo”)}, and b
 = {(z,true)}. The individual domain
concretizations produce sets of memories containing integers,
strings, and Booleans, respectively. When applied to the given
state, they thus produce {{(x, 42)}}, { {(y, σ )} | “foo” �p σ },
and {{(z,true)}}, respectively. The concretization function γM


returns all possible combinations of such memories, producing the
set { ({(x, 42)}, {(y, σ )}, {(z,true)}) | “foo” �p σ }.

5.3 Abstract semantics

As typical in Cartesian products, the abstract statement
semantics �st� :M
 → M
 of our framework is defined as
�st�(a
, s
, b
) = (�st�A
 a
, �st�S
 s
, �st�B
 b
), where �st�A


is
the statement semantics of A
, �st�S


is the statement semantics
of S
, and �st�B
 is the statement semantics of B
. The state of
each component of the framework thus evolves in isolation, storing
information on disjoint sets of variables. Note that such a semantics
is inherently sound, as it is the element-wise application of sound
abstract transformers. Our framework goes beyond the Cartesian
product: in fact, we adopt the open product framework (Cortesi
et al., 2013) to allow for modular communication between the
different domains. We thus redefine how multi-type expressions are
evaluated within the framework. The key idea is to let one domain
evaluate the expression, while providing it with an additional tool:
abstract constraints. These are formalized as a subset of the Boolean
expressions BE parametric on the expression being constrained,
denoted BE(e).

Definition 12 (Abstract constraints set BE(e)). The set of abstract
constraints BE(e), parametric over an expression e, is the set of
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Boolean expressions 〈v 
 e〉 with a value v ∈ VAL on the left-
hand side, and an expression e on the right-hand side. Given an
expression e ∈ EXPR, BE(e) contains the elements:

BE(e) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ 〈v � e〉 | v ∈ Z } if e ∈ AE;
{ 〈v == e〉 | v ∈ B } if e ∈ BE;
{ 〈v � e〉 | v ∈ �∗ ∧� ∈
{==, ! =,�,�p,�s} }
∪ { 〈v � len(e)〉 | v ∈ Z } if e ∈ SE.

Depending on the type of expression e, BE(e) thus contains (i)
numeric (in-)equalities, (ii) Boolean equalities, or (iii) constraints
about the contents and length of a string. A set of constraints
B ⊆ BE(e) represents definite information: if B = ∅ then all
possible concrete values compatible with the expression’s type are
allowed, while each generated constraint reduces the set of possible
values. Furthermore, a special constraint set � is used to denote
an invalid set (e.g., with contradicting constraints), that models
an expression whose evaluation leads to an error. The powerset of
constraints form the complete lattice 〈℘(BE(e)),⊇,∩,∪, ∅, BE(e)〉,
whose elements can be converted to sets of concrete values using
the concretization function γBE(e).

Definition 13 (Concretization of abstract constraints). The
concretization function γBE(e) :℘(BE(e)) → ℘(VAL) converts a set
of abstract constraints to the set of concrete values satisfying them.
Formally:

γBE(e)(B) = { v | ∀ 〈v′
e〉 ∈ B : v′
v } with γBE(e)(�) = {⇑}.

Note that γBE(e) is trivially monotone, since fewer constraints (recall
that the ordering relation over ℘(BE(e)) is⊇) lead to a larger set of
values satisfying them.

Abstract domains need to both (i) generate constraints on
expressions they can handle (i.e., of the type they model), and
(ii) generate an abstract element from a set of constraints, in
order to interpret the information provided to them by the other
domains. We thus define two functions, C and G, that model these
operations. In the following, let D be an abstract domain providing
all the ingredients enumerated at the beginning of Section 5, and let
V be the complete partial order of the values produced by �e�D .

Definition 14 (Abstract constraint function C). Given an
abstract domain D, the abstract constraint function CD :D ×
EXPR → ℘(BE(e)), where the second argument corresponds
to the parameter of the generated constraint set, yields Boolean
constraints about an expression e ∈ EXPR, generating bounds
on its concrete values based on the information contained in an
instance of the domain d
 ∈ D. The result of the function is a set of
Boolean constraints parametric in the input expression.

C can thus be used to restrict the set of values an expression can
evaluate to. Note that, by passing a relational expression to C, one
can gain relational information despite the output being given as
non-relational constraints. We assume that sets generated by C and
received by G are minimal, that is, they do not include constraints
that are implied by other ones already in the set. Also, recall that
no contradicting constraints can be generated, as they would lead
to the invalid set of constraints �.

Definition 15 (Constraint interpretation function G). Given an
abstract domain D that models expression values as elements
of a complete partial order V , a set of constraints parametric
over an expression e ∈ EXPR can be materialized to an
abstract value v ∈ V that satisfies all constraints using function
GD :℘(BE(e)) → V .

G is thus able to generate an abstract element that soundly
abstracts (i.e., over-approximates) the concrete values identified by
the conjunction of the provided constraints. All domains taking
part in the framework thus have to define C and G to be employed
in constraint-based whole-value analyses. Formalizations and
examples of both C and G are provided in Section 6. We
are now in a position to define how multi-type expressions are
evaluated within the framework. We express such evaluations in
big-step notation.

−
�len(s)�μ
 = GA
 ({ 〈n � len(s)〉 | 〈n � len(s)〉 ∈ Cs
 (s
 , s) }) (5.1)

−
�a1 � a2�μ
 = GB
 (CA
 (a
, a1 � a2))

(5.2)

−
�s1 == s2�μ
 = GB
 (CS
 (s
, s1 == s2))

(5.3)

−
�contains(s1, s2)�μ
 = GB
 (CS
 (s
,contains(s1, s2)))

(5.4)

A1 = CA
 (a
, a1) A2 = CA
 (a
, a2)

�substr(s, a1, a2)�μ
 = �substr(s, A1, A2)�S
 s

(5.5)

e = a1 < 0 or a2 >= len(s) or a1 > a2 〈true == e〉 ∈ CA
 (a
 , e)

�substr(s, a1, a2)�μ
 = ⊥S


(5.6)

When all arguments are of a coherent type, the evaluation
is straightforward: Equations 5.2–5.4 proceed by (i) generating
constraints over the result using C on the appropriate domain
instance (a
 or s
), and (ii) converting the constraints to a Boolean
abstraction using GB
 . The evaluation of len(s) in Equation 5.1
is slightly different: the abstract domain s
 generates constraints
on the expression s, and only the ones regarding its length
are kept. Such constraints are then passed to GA
 to build an
abstract integer. The evaluation of substr(s, a1, a2) is more
complex: if one of the necessary conditions is violated, as described
in Equation 5.6, the bottom element is generated. Instead, the
domain-dependent semantics �substr(s, A1, A2)�S
 is invoked
in Equation 5.5, taking in a description of the integer arguments
in the form of sets of constraints. Note that, whenever the
computation happens in a domain but produces a value of another
type (as, e.g., in Equation 5.1), the cross-domain communication
happens entirely through functions C and G. Instead, when
an operation has parameters of different types, the semantics
of that operation must be redefined in terms of constraints, as
in Equation 5.5.

Example 5.2. Let us consider the same setting of Example 5.1,
where the framework is instantiated as 〈ID → Z�⊥ ⊗ ID →
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�∗
⊥ ⊗ ID → ℘(B)〉, and consider the same state μ
 = (a
, s
, b
)

where a
 = {(x, 42)}, s
 = {(y, “foo”)}, and b
 = {(z,true)}. If we
were to evaluate the assignment k = len(y) + 1, the framework
would employ the multi-type expression semantics first: CPR(s
, y)
evaluates, as will be discussed in Section 6.5, to the set {3 <=
len(y)} (intuitively, being “foo” a prefix, every string stored in y
is guaranteed to have length at least 3, with no information on
its maximum length). The set of constraints is then passed to the
constant propagation domain, and GCP({3 <= len(y)}) yields, as
will be defined in Section 6.1,� since the expression is not constant.
Thus, the final state after the assignment is μ



1 = (a


1, s
, b
) where
a


1 = {(x, 42), (k,�)}.
Example 5.3. Let us change the setting of Example 5.2 by using the
interval domain as numerical abstraction. The framework is now
instantiated as 〈ID → I ⊗ ID → �∗

⊥ ⊗ ID → ℘(B)〉, where I is
the set of intervals as defined in Section 6.2. Let the starting state
be μ
 = (a
, s
, b
) where a
 = {(x, [42, 42])}, s
 = {(y, “foo”)},
and b
 = {(z,true)}. If we evaluate once more the assignment
k = len(y) + 1, the evaluation only changes in the generation
of the interval element: function GINTV({3 <= len(y)}) yields, as
formalized in Section 6.2, [3,+∞]. Thus, the final state after the
assignment is μ



2 = (a


2, s
, b
) where a

2 = {(x, 42), [4,+∞]}.

5.4 Soundness of the multi-type semantics

Having modified how multi-type expressions are abstracted, we
have to ensure that those definitions are sound for the soundness
of the abstract semantics to hold. To prove this, we assume that the
definitions of C and G provided by the domains are sound, relying
on the monotone concretization function γBE(e).

Definition 16 (Soundness of C). Given an abstract domain
D, function CD is sound if the conjunction of the produced
constraints soundly approximate the concrete values of the
expression, that is, if ∀ e ∈ EXPR, d
 ∈ D : γD(�e�d
) ⊆
γBE(e)(CD(d
, e)).

Definition 17 (Soundness of G). Given an abstract domain D,
function GD is sound if the generated element over-approximates
the concrete elements identified by the constraints, that is, if ∀ e ∈
EXPR, B ⊆ BE(e) : γBE(e)(B) ⊆ γD(GD(B)).

Soundness of C is thus ensured if all possible concrete values
of the expression satisfy all the generated constraints. Instead, G
is sound if all the concrete values identified by the constraints are
abstracted by the generated element. We now define the criteria for
the soundness of the substring semantics �substr(s, A1, A2)�S


.

Definition 18 (Soundness of �substr(s, A1, A2)�S

). Given

a string abstract domain S
 whose expression semantics
produces elements of the complete partial order V , the function
�substr(s, A1, A2)�S


is sound if the generated abstract
element is a sound approximation of all the possible substrings
evaluated in the concrete. Formally, the function is sound if ∀ e ∈
EXPR, A1, A2 ∈ BE(e), s
 ∈ S
 : { σ [i : j] | σ ∈ γS
 (�s�S
 s
) ∧ i ∈
γBE(e)(A1) ∧ j ∈ γBE(e)(A2) } ⊆ γS
 (�substr(s, A1, A2)�S
 s
).

We can now reason on the soundness of the abstract
transformers. Recall that, to be employed in our framework,

an abstract domain must provide sound definitions
of �st� and �e�. These are then applied element-wise
on the abstract memory of each domain (recall that
�st�(a
, s
, b
) = (�st�A
 a
, �st�S
 s
, �st�B
 b
), and �e� delegates
to the appropriate domain for single-type expressions). Thus, the
evaluation of statements and single-type expressions is trivially
sound, provided that the multi-type expression evaluation is sound
as well. Assuming all domains provide sound C and G, and that
the string domain provides a sound �substr(s, A1, A2)�S


, we
now define the soundness of the multi-type semantics, which we
generically denote with �e�.

Theorem 19 (Soundness of �e�). The evaluation of multi-type
expressions �e� is a sound approximation of the split collecting
semantics �e	+. Formally, ∀ e ∈ EXPR : �e	+γM
 (μ
) ⊆
γM
 (�e�μ
). Proof in Appendix A.4.

6 Instantiation

In this section, we provide definitions of C, G, and
�substr(s, A1, A2)�S
 for domains commonly used in whole-
value analyses. Thanks to our definitions, such domains can be
implemented in a static analyzer modularly, and several of their
combinations can be tested without modifying their code. The
choice of the abstractions is guided by the literature on string
analyses since, as will be discussed in section 8, they are the
most common source of whole-value analyses definitions. We thus
select:

• the constant propagation and interval (Cousot and Cousot,
1977) domains as numeric abstractions;

• the powerset abstraction for Boolean values;
• the bounded string set (Madsen and Andreasen, 2014), the

prefix (Costantini et al., 2015), and the Tarsis (Negrini et al.,
2021) domains for string abstractions.

The rationale behind this choice is that constant propagation
and intervals are the most common numeric abstractions used in
string analyses, while powerset abstraction is the only employed
Boolean abstraction. Bounded string set, prefix, and Tarsis are
instead domains tracking increasingly complex string information,
showcasing how our framework can be instantiated on different
levels of complexity. All domains that will be discussed are non-
relational, meaning that they are defined as maps from program
variables to abstract elements. To unify the notation, in each
definition we will use � to define maps having all keys mapped to
the top abstract element, and⊥ to indicate an error state.

6.1 Constant propagation

The constant propagation domain CP is a simple non-relational
domain whose lattice elements are maps from program variables to
integer values. The abstract domain is defined as follows:

CP = 〈ID → Z�⊥, ≤̇, �̇, �̇,�,⊥〉,
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FIGURE 2

Hasse diagram of the numeric constant propagation values Z
�
⊥.

where the co-domain of the maps is Z extended with � (for non-
constant values) and ⊥ (for erroneous values), and ≤̇, �̇, and �̇ are
point-wise applications of the operators that can be inferred by the
Hasse diagram of Z�⊥, visible in Figure 2. We now define functions
CCP and GCP.

Definition 20 (Constraint generation for CP). Let μ
 ∈ CP be
a mapping from program variables to integer constants. Function
CCP :CP × EXPR → ℘(BE(e)) is defined as:

CCP(μ
, e) =

⎧⎪⎪⎨
⎪⎪⎩
∅ if �e�CPμ
 = �;
{〈v == e〉} if �e�CPμ
 = v ∈ Z;
� if �e�CPμ
 = ⊥.

CCP thus generates (i) no constraints if the expression does not
have a constant value, (ii) a constraint binding the exact value of the
expression if it is constant, or (iii) � if the evaluation of e leads to
an error.

Definition 21 (Constraint interpretation for CP). Let B ⊆ BE(e)
be a set of constraints. Function GCP :℘(BE(e)) → Z�⊥ is defined
as:

GCP(B) =

⎧⎪⎪⎨
⎪⎪⎩
⊥ if B = �;
v if 〈v == e〉 ∈ B ∨ {〈v >= e〉, 〈v <= e〉} ⊆ B;
� otherwise.

GCP thus returns ⊥ if the set of constraints is �, the constant
value v if the constraints bind the value of the expression to v, and�
otherwise. Soundness of CCP and GCP is proven in Appendix A.5.1.

6.2 Intervals

The intervals domain INTV (Cousot and Cousot, 1977) is a non-
relational domain whose lattice elements are maps from program
variables to the ranges [l, u] their values might take, with l ∈
Z ∪ {−∞} and u ∈ Z ∪ {+∞}. The abstract domain is defined
as follows:

INTV = 〈ID → I, �̇, �̇, �̇,�,⊥〉,
where the co-domain of the maps is I � (Z ∪ {−∞} × Z ∪
{+∞})∪⊥ corresponding to all possible intervals plus⊥ to model
erroneous values. Lattice operators are point-wise applications of
the operators that can be inferred by the Hasse diagram of I, visible
in Figure 3. We now define CINTV and GINTV.

FIGURE 3

Hasse diagram of the intervals I.

Definition 22 (Constraint generation for INTV). Let μ
 ∈ INTV

be a mapping from program variables to intervals. Function
CINTV : INTV × EXPR → ℘(BE(e)) is defined as:

CINTV(μ
, e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if �e�INTVμ
 = [−∞,+∞];
{〈l <= e〉} if �e�INTVμ
 = [l,+∞], l ∈ Z;
{〈u >= e〉} if �e�INTVμ
 = [−∞, u], u ∈ Z;
{〈l <= e〉,
〈u >= e〉} if �e�INTVμ
 = [l, u], l, u ∈ Z;
� if �e�INTVμ
 = ⊥.

CINTV thus generates (i) no constraints if the expression can
evaluate to any value, (ii) a constraint for each finite bound of the
interval produced by evaluating e, or (iii) � if the evaluation of e
leads to an error.

Definition 23 (Constraint interpretation for INTV). Let B ⊆ BE(e)
be a set of constraints. Function GINTV :℘(BE(e)) → I is defined
as:

GINTV(B) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if B = �;
[v, v] if 〈v == e〉 ∈ B;
[l, u] if {〈l <= e〉, 〈u >= e〉} ⊆ B;
[l,+∞] if 〈l <= e〉 ∈ B ∧ �u ∈ Z : 〈u >= e〉 ∈ B;
[−∞, u] if 〈u >= e〉 ∈ B ∧ �l ∈ Z : 〈l <= e〉 ∈ B;
[−∞,+∞] otherwise.

GINTV thus returns ⊥ if the set of constraints is �, and
the interval corresponding to the range of possible values of
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FIGURE 4

Hasse diagram of the Boolean powerset ℘(B).

e otherwise. Soundness of CINTV and GINTV is proven in
Appendix A.5.2.

6.3 Boolean powerset

The boolean powerset domain BP is a non-relational domain
whose lattice elements are maps from program variables to subsets
of the Boolean values B. The abstract domain is defined as follows:

BP = 〈ID → ℘(B), ⊆̇, ∪̇, ∩̇,�,⊥〉,

where the co-domain of the maps is ℘(B). Lattice operators are
point-wise applications of the operators that can be inferred by the
Hasse diagram of ℘(B), visible in Figure 4. CBP and GBP are defined
as follows.

Definition 24 (Constraint generation for BP). Let μ
 ∈ BP be
a mapping from program variables to sets of Booleans. Function
CBP :BP × EXPR → ℘(BE(e)) is defined as:

CBP(μ
, e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if �e�BPμ
 = B;
{〈true == e〉} if �e�BPμ
 = {true};
{〈false == e〉} if �e�BPμ
 = {false};
� if �e�BPμ
 = ⊥.

CBP thus generates (i) no constraints if the expression can
evaluate to any value, (ii) a constraint binding the expression to its
Boolean value as determined by the domain if it can only assume
one value, or (iii) � if evaluating the expression leads to an error.

Definition 25 (Constraint interpretation for BP). Let B ⊆ BE(e)
be a set of constraints. Function GBP :℘(BE(e)) → ℘(B) is defined
as:

GBP(B) =

⎧⎪⎪⎨
⎪⎪⎩
∅ if B = �;
{b} if 〈b == e〉 ∈ B;
B otherwise.

GBP thus returns ∅ if the set of constraints is �, the set {b}
if the expression is constrained to the Boolean value b, or the
top element B otherwise. Soundness of CBP and GBP is proven in
Appendix A.5.3.

FIGURE 5

Hasse diagram of the bounded set of strings ℘3(�∗).

6.4 Bounded string set

The bounded string set domain SS (Madsen and Andreasen,
2014) is a non-relational domain whose lattice elements are maps
from program variables to bounded sets of up to k strings. The
abstract domain is defined as:

SS = 〈ID → ℘k(�∗), ⊆̇, ∪̇k, ∩̇,�,⊥〉,

where the co-domain of the maps is ℘k(�∗) ⊂ ℘(�∗), that is,
the powerset ℘(�∗) where all sets with cardinality greater than k
have been removed. An example of such a powerset, with k = 3, is
visible in Figure 5. �∗ represents an unknown string (i.e., a set with
more than k elements), while ∅ represents erroneous values. Lattice
operators ⊆̇, ∪̇k, and ∩̇ are point-wise applications of the respective
set-theoretic operators, with ∪k defined as:

A ∪k B �
{

A ∪ B if |A ∪ B| ≤ k;
�∗ otherwise.

We now define functions CSS and GSS.

Definition 26 (Constraint generation for SS). Let μ
 ∈ SS be
a mapping from program variables to bounded sets of strings.
Function CSS : SS × EXPR → ℘(BE(e)) is defined as:

CSS(μ
, e) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{〈0 <= len(e)〉} if �e�SSμ
 =
℘k(�∗);⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈mini∈[1..n] |σi| <= len(e)〉,
〈maxi∈[1..n] |σi| >= len(e)〉,
〈gcp{σ1, . . . , σn}�p e〉,
〈gcs{σ1, . . . , σn}�s e〉

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if �e�SSμ
 =
{σ1, . . . , σn}, n ≤ k;

� if �e�SSμ
 = ∅.
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CSS thus generates (i) a constraint indicating that the length of
the expression is non-negative if the expression has more than k
possible values, (ii) constraints binding (a) the prefix of the string
to the greatest common prefix (gcp) of the set, (b) the suffix of
the string to the greatest common suffix (gcs) of the set, and (c)
bounds on the length of the string corresponding to the length of
the shortest and longest string in the set, if it can have at most
k possible values, or (iii) � if evaluating the expression leads to
an error. Note that we always produce length constraints when
possible, to provide information to numerical domains that might
use it.

Definition 27 (Constraint interpretation for SS). Let B ⊆ BE(e) be
a set of constraints. Function GSS :℘(BE(e)) → ℘k(�∗) is defined
as:

GSS(B) =

⎧⎪⎪⎨
⎪⎪⎩
∅ if B = �;
{σ } if 〈σ == e〉 ∈ B;
�∗ otherwise.

GSS thus returns ∅ if the set of constraints is �, the set {σ } if the
constraints bind the value of the expression to σ , and �∗ otherwise.
Note that, since the constraint set holds definite information, there
cannot be more than one constraint using ==, and constraints
on prefix and suffix yield infinitely many strings: we thus cannot
generate sets with more than one concrete string. We can now
provide the definition of �substr(s, A1, A2)�S


. Since SS can only
model bounded sets, we have to ensure that the resulting set holds
at most k substrings; otherwise, the semantics returns �∗ if no
evaluation error happens.

Definition 28 (Substring semantics for SS). Let μ
 ∈ SS be
a mapping from program variables to bounded sets of strings,
and let A1 ⊆ BE(e1) and A2 ⊆ BE(e2) be sets of constraints
describing integer expressions e1 and e2, respectively. Function
�substr(s, A1, A2)�SS is defined as:

�substr(s, A1, A2)�SSμ
 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if �s�SSμ
 = ∅ ∨ A1 =
� ∨ A2 = �;

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σw[x : y]

∣∣∣∣∣∣∣∣∣∣

1 ≤ w ≤ n,

il ≤ x ≤ ih,

jl ≤ y ≤ jh,

0 ≤ x ≤ y ≤ |σw|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if �s�SSμ
 = {σ1, . . . , σn}
∧ {〈il <= e1〉, 〈ih >= e1〉}
⊆ A1

∧ {〈jl <= e2〉, 〈jh >= e2〉}
⊆ A2

∧ count(μ
, s, A1, A2) ≤ k;
�∗ otherwise,

where function count returns the number of valid substrings that
can be computed through its parameters (the definition is left
implicit, but intuitively it returns the cardinality of the set returned
in the second case) and, for the sake of readability, we omit the cases
when at least one of i or j are constants (i.e., when 〈i == e1〉 ∈ A1
and 〈j == e2〉 ∈ A2, respectively), as they can be assimilated to the
central case when both inequalities have the same bound. We also
omit the case where either i or j is unbounded (i.e., where no upper
bound on their value is present in the respective constraint set), as

FIGURE 6

Hasse diagram of the prefixes �∗
⊥.

they will generate infinitely many substrings and will collapse the
result to �∗.

Soundness of CSS, GSS, and �substr(s, A1, A2)�SS is proven in
Appendix A.5.4.

6.5 Prefix

The prefix domain PR (Costantini et al., 2015) is a non-
relational domain whose lattice elements are maps from program
variables to strings acting as prefixes. The abstract domain is
defined as:

PR = 〈ID → �∗
⊥, �̇, ˙gcp, �̇,�,⊥〉,

where the co-domain of the maps is �∗
⊥, whose Hasse diagram is

visible in Figure 6. Elements are ordered according to the reverse
prefix relation: σ1 � σ2 ⇐⇒ σ2 �p σ1. The empty string ε thus
represents an unknown string (since ∀σ ∈ �∗ : ε �p σ ), while
⊥ represents erroneous values. Lattice operators �̇, ˙gcp, and �̇ are
point-wise applications of the respective operators over �∗

⊥, with
gcp and � defined as:

σ1 gcp σ2 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1 if σ1 �p σ2;
σ2 if σ2 �p σ1;
σp otherwise, with σ1 = σpσ

′

∧ σ2 = σpσ
′′ ∧ σ ′0 	= σ ′′0 ,

and

σ1 � σ2 �

⎧⎪⎪⎨
⎪⎪⎩

σ1 if σ1 �p σ2;
σ2 if σ2 �p σ1;
⊥ otherwise.

We now define functions CPR and GPR.
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Definition 29 (Constraint generation for PR). Let μ
 ∈ PR be
a mapping from program variables to string prefixes. Function
CPR :PR × EXPR → ℘(BE(e)) is defined as:

CPR(μ
, e) =

⎧⎪⎪⎨
⎪⎪⎩
{〈0 <= len(e)〉} if �e�PRμ
 = ε;
{〈|σ | <= len(e)〉, σ �p e} if �e�PRμ
 = σ ;
� if �e�PRμ
 = ⊥.

CPR thus generates (i) a constraint indicating that the length
of the expression is non-negative if the expression can assume any
string value, (ii) constraints binding (a) the prefix of the string
to the result of the evaluation, and (b) the lower bound on the
length of the string corresponding to the length of the prefix, if the
evaluation produces a valid string as a result, or (iii) � if evaluating
the expression leads to an error. Note that we always produce
length constraints when possible provide information to numerical
domains that might use it.

Definition 30 (Constraint interpretation for PR). Let B ⊆ BE(e)
be a set of constraints. Function GPR :℘(BE(e)) → �∗

⊥ is defined
as:

GPR(B) =

⎧⎪⎪⎨
⎪⎪⎩
⊥ if B = �;
σ if 〈σ == e〉 ∈ B ∨ 〈σ �p e〉 ∈ B;
ε otherwise.

GPR thus returns ⊥ if the set of constraints is �, the prefix
σ if the constraints bind either the value of the expression or its
prefix to σ , and ε otherwise. We can now provide the definition of
�substr(s, A1, A2)�S


.

Definition 31 (Substring semantics for PR). Let μ
 ∈ PR

be a mapping from program variables to string prefixes, and
let A1, A2 ⊆ BE(e) be sets of constraints describing integer
expressions. Furthermore, let us denote as i the minimal non-
negative value admitted by A1, and by j the minimal non-negative
value admitted by A2 that is greater than or equal to i. Function
�substr(s, A1, A2)�PR is defined as:

asemsubstr(s, A1, A2)PR
μ
 =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊥ if �e�PRμ
 = ⊥ ∨ A1 = � ∨ A2 = �;
σ [i : j] if �e�PRμ
 = σ ∧ i ≤ j ≤ |σ |;
σ [i : |σ | − 1] if �e�PRμ
 = σ ∧ i ≤ |σ | < j;
ε if �e�PRμ
 = σ ∧ |σ | < i ≤ j.

�substr(s, A1, A2)�PR thus shortens the approximation for
the expression if (part of) the substring lies within the prefix,
truncating it to ε otherwise. Soundness of CPR, GPR, and
�substr(s, A1, A2)�PR is proven in Appendix A.5.5.

6.6 Tarsis

The Tarsis domain TA (Negrini et al., 2021) is a non-relational
domain whose lattice elements are maps from program variables
to special finite state automata defined over an alphabet of strings
instead of single characters. The abstract domain is defined as:

TA = 〈ID → T FA/≡, �̇, �̇, �̇,�,⊥〉,

where the co-domain of the maps is the set of equivalence classes
of finite state automata with string alphabets T FA/≡, and whose
lattice operators are point-wise applications of the respective
operators over T FA/≡. Specifically, � is the partial order induced
by language inclusion, � and � correspond to automata union
and intersection, respectively, and the top and bottom elements
are Min(A∗P) and Min(∅) (respectively, the minimum automata
recognizing all possible strings and the one recognizing the empty
language). Following the notation from Negrini et al. (2021), we
denote as A ∈ T FA/≡ a Tarsis automaton, and as L(A) ∈ ℘(�∗)
the regular language recognized by A. We now define functions CTA

and GTA.

Definition 32 (Constraint generation for TA). Let μ
 ∈ TA be
a mapping from program variables to T FA/≡ automata. Function
CTA :TA × EXPR → ℘(BE(e)) is defined as:

CTA(μ
, e) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{〈0 <= len(e)〉} if �e�TAμ
 = Min(A∗P);
{〈σ == e〉,
〈|σ | <= len(e)〉, 〈|σ |
>= len(e)〉} if L(�e�TAμ
) = {σ };⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈lcp(A) �p e〉,
〈lcp(rev(A)) �s e〉,
〈i <= len(e)〉,
〈j <= len(e)〉

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if �e�TAμ
 = A ∧ len(A) = [i, j];

� if �e�TAμ
 = Min(∅).

CTA thus generates (i) a constraint indicating that the length
of the expression is non-negative if the expression can assume any
string value, (ii) constraints binding the exact value and length of
the string if it can assume exactly one string value, (iii) constraints
binding prefix (where lcp is the largest common prefix, e.g., the
one proposed in Béal and Carton, 2000), suffix (where rev(A)
reverses an automaton by swapping initial and accepting states and
inverting the direction of edges), minimum length and maximum
length of the string (where len(A) is the abstract semantics of len
as defined in Negrini et al., 2021) according to the result of the
evaluation, or (iv) � if evaluating the expression leads to an error.
For the sake of readability, the case when j = +∞ is not shown
as it is equal to the displayed case, except that the bound using
j is absent. Note that we always produce length constraints when
possible provide information to numerical domains that might
use it.

Definition 33 (Constraint interpretation for TA). Let B ⊆ BE(e) be
a set of constraints, let L(σ ) be the minimum automata A ∈ T FA/≡
recognizing the regular language {σ }, and let � be the automata
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concatenation. Function GTA :℘(BE(e)) → �∗
⊥ is defined as:

GTA(B) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min(∅) if B = �;
L(σ ) if 〈σ == e〉 ∈ B;
L(σ ) � Min(A∗P) if 〈σ �p e〉 ∈ B ∧ �σ ′ ∈ �∗ : 〈σ ′ �s e〉

∈ B;
Min(A∗P) � L(σ ) if 〈σ �s e〉 ∈ B ∧ �σ ′ ∈ �∗ : 〈σ ′ �p e〉

∈ B;
L(σ ) � Min(A∗P)

� L(σ ′) if {〈σ �p e〉, 〈σ ′ �s e〉} ⊆ B;
Min(A∗P) otherwise.

GTA thus returns Min(∅) if the set of constraints is �, the
automaton recognizing σ if the constraints bind the value of the
expression to σ , the left — resp. right — concatenation between the
definite prefix — resp. suffix — and Min(A∗P) if they are known,
and Min(A∗P) otherwise. We can now provide the definition of
�substr(s, A1, A2)�S


.

Definition 34 (Substring semantics for TA). Let μ
 ∈ TA be
a mapping from program variables to T FA/≡ automata, and
let A1, A2 ⊆ BE(e) be sets of constraints describing integer
expressions. Furthermore, let us denote as i+ and i− the maximal
and minimal values admitted by A1, and by j+ and j− the
maximal and minimal values admitted by A2, with i+ and
j+ possibly equal to +∞. Function �substr(s, A1, A2)�TA is
defined as:

�substr(s, A1, A2)�TAμ
 ={
Min(∅) if �e�TAμ
 = Min(∅) ∨ A1 = � ∨ A2 = �;
A[[i−, i+] :[j−, j+]] if �e�TAμ
 = A.

�substr(s, A1, A2)�TA thus directly delegates to the substring
semantics of Tarsis using the intervals [i−, i+] and [j−, j+] as
indices, since the domain defines its semantics in terms of intervals.
Soundness of CTA, GTA, and �substr(s, A1, A2)�TA is proven in
Appendix A.5.6.

6.7 Products of abstract domains

The formalizations given in this section all refer to individual
domains. However, it is possible to abstract a single data
type using a product of abstract domains, e.g., as in Madsen
and Andreasen (2014). The extension to such a setting is
straightforward: G and �substr(s, A1, A2)� are simply
applied domain-wise, making each produce abstract elements
independently, possibly followed by reductions. Instead, since
C must produce a minimal set of constraints containing no
contradictions, the result of the individual constraint generations
from each domain must be composed together to eliminate
redundant constraints, collapsing the result to � if a contradiction
is found.

7 Implementation and evaluation

The framework presented in this study has been implemented
in LiSA (Negrini et al., 2023a), an open-source1 Java library
designed to ease the creation of static analyzers and offering a
common platform for the development of abstract interpretations
(see, e.g., Zanatta et al., 2025; Negrini et al., 2024; Olivieri
et al., 2023; Negrini et al., 2023b). Among these, Negrini et al.
(2021) provided a comparison between five string abstractions on
four expressive string manipulation programs, with the objective
of proving assertions. The considered abstractions were the prefix,
suffix, character inclusion, and bricks domain from Costantini
et al. (2015), the FSA domain from Arceri et al. (2020), and the
Tarsis abstract domain presented in that study. The comparison
was performed by building, for each domain, a smashed product
between the string abstraction, the interval domain, and the
Boolean powerset abstraction. The semantics of each domain were
thus coded explicitly for that combination. Some domains were,
however, formalized with respect to integer constants instead of
intervals, and thus required their semantics to be explicitly lifted
beforehand.

In this section, we (i) discuss the implementation effort to code
both the smashed product and the constraint-based analysis in
LiSA, and (ii) replicate the experiments from Negrini et al. (2021)
to ensure that the constraint-based analysis can achieve the same
precision as the smashed product. Specifically, we employed the
following domains:

• the constant propagation domain CP and the interval domain
INTV as numeric abstractions;

• the Boolean powerset domain BP as Boolean abstraction;
• the prefix domain PR, the suffix domain SU, the character

inclusion domain CI, the bounded string set domain SS (with
k = 5), and the Tarsis domain TA as string abstractions.

Note that our evaluation includes two additional domains SU

and CI, and that each domain supports additional multi-
type expressions with respect to the ones defined in this
study (e.g., the index operator discovering the first index
where a search string appears in a target string). These have
been omitted for conciseness, as they would not add any
technical contribution.

7.1 Implementation in LiSA

In LiSA, each abstract domain is implemented as a separate
Java class that must implement some key interfaces. All domains
chosen for the evaluation are non-relational (i.e., they do
not explicitly track relations across different variables’ values):
thus, they all implement the NonRelationalValueDomain
interface, which requires the definition of lattice operators for
individual abstract values (e.g., operating on single intervals) and
of the evaluation logic for expressions given the value of each

1 LiSA’s GitHub repository.
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FIGURE 7

Program samples used for domain comparison. (a) Program Subs. (b) Program ToString. (c) Program Loop. (d) Program CountMatches.

variable. Abstract transformers for statements (e.g., assignments)
are handled modularly by the ValueEnvironment class, which
lifts instances of the non-relational domains to maps from variables
to abstract values.

Both the smashed product2 and the constraint-
based analysis3 have been implemented as instances of
NonRelationalValueDomain as well, each holding
references to the client domains that they use for type-specific
computations. The implementations are fairly similar both in
complexity and length (364 and 357 lines, respectively). The
per-domain effort instead varies: the methods implemented
for the smashed product are typically shorter, but they require
non-trivial reasoning; instead, methods for the constraint-based
analysis are fewer and simpler (mainly consisting of iterations
over the constraint sets), but are longer. The sizes, however,
remain comparable (e.g., the largest difference is seen in Tarsis,
where the constraint-based analysis requires writing ∼50 more
lines of code), indicating that the constraint-based analysis
does not require additional development efforts. Note, however,
that LiSA is built to be as modular as possible: all domains are
made to be pluggable and, to some extent, replaceable with
no code modifications. This is reflected in the non-relational

2 Implementation of the smashed product is publicly available inside LiSA.

3 Implementation of the constraint-based analysis is publicly available

inside LiSA.

smashed product implementation as well: relational domains
would not fit within the current communication scheme, and
would require additional complexity. Instead, the constraint-
based analysis features modular communication by design,
and its structure is expected to be preserved regardless of the
chosen domains.

7.2 Comparison with the smashed product

The experiments of Negrini et al. (2021) were run on the
program samples visible in Figure 7, written in Go (where the
code of strings.Count used in program CountMatches is
visible in Figure 8). For each combination of the domains reported
at the beginning of this section, we ran the analysis with the
smashed product-based combination and with the constraint-based
combination presented in this work, ensuring that the assertions
they can prove are the same.

The results of each analysis are visible in Table 1, where
column Domain reports the combination of abstract domains
used and, for each analyzed program, columns Smash and Constr
report the assertions’ results (where ✓ denotes an assertion
that never fails, ✗ an assertion that always fails, and ✱ an
assertion that might fail, according to the invariants computed
by the analysis) with the smashed product and the constraint-
based analysis, respectively. Invariants computed by each analysis
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are omitted for space reasons, but were nonetheless manually
inspected at each program point. The experiments highlight that
our constraint-based approach yields the same precision as the
explicit smashed product: in fact, LiSA was able to determine
the same result (never fails, always fails, or might fail) for all
assertions in the target programs. Moreover, during the manual
inspection of the invariants, we did not find differences in the states
produced by each domain in the smashed product and constraint-
based analysis, thus justifying the observed equality in the
assertions’ results.

8 Related work

The problem of combining heterogeneous abstractions to
perform whole-value analyses is not new, as it is implicitly

FIGURE 8

The strings.Count function of the Go API.

formalized in all string analysis definitions. However,
formalizations are typically tailored to a specific combination
of abstract domains.

Christensen et al. (2003b) introduces JSA, an analyzer for
Java that analyzes strings by building flow graphs expressing how
string sources (i.e., constants and user inputs) are manipulated
along the program execution, with the objective of validating the
structure of dynamically-generated content like XML documents
or the targets of reflective calls. Christensen et al. (2003a) uses
such analysis to further validate web services generating HTML
pages. In such flow graphs, non-string arguments used in string
expressions are treated as part of the operators’ definition, e.g.,
setCharAt(0, “x") and setCharAt(1, “x") are seen
as two different operators. Thus, no reasoning on how to combine
the flow graphs with domain modeling, additional data types
is given. Further investigating document validation techniques,
Kim and Choe (2011) employs a domain based on pushdown
automata, but only defines concatenation as an abstract operation.
A notable effort by the community targeted the analysis of
dynamic property accesses in JavaScript code. Park et al. (2016)
defines a domain based on regular expressions. Madsen and
Andreasen (2014) reports several existing string domains, but also
defines new ones: LENGTH HASH, (SLIDING) INDEX PREDICATE,
STRING HASH, NUMBER STRINGS, and TYPE STRINGS, and
reasons on their combination. In both works, the authors only
formalize the semantics of equality tests and string concatenation,
with no reasoning for the usage of the presented domains in
whole-value analyses.

Several general-purpose string abstractions have been
proposed over the years, which are the most common source
of whole-value analyses. Costantini et al. (2015) formalizes the
CHARACTER INCLUSION, PREFIX, SUFFIX, BRICKS, and STRING

GRAPH domains, tracking increasingly complex non-relational
information on string values. Each domain defines the semantics
of substring using integer coefficients, and the semantics of
contains that returns an element of the Boolean powerset.
However, no discussion on what the result of the substring is
when the indexes are not constant is given. Instead, Arceri et al.

TABLE 1 Proved assertions by each domain combination on the target programs.

Domain Subs ToString Loop CountMatches

Smash Constr Smash Constr Smash Constr Smash Constr

BP-CP-SS ✓✱✱✗ ✓✱✱✗ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✓✗✱ ✓✗✱

BP-CP-CI ✱✱✱✱ ✱✱✱✱ ✱✱✱ ✱✱✱ ✓✱✱ ✓✱✱ ✱✱✱ ✱✱✱

BP-CP-PR ✓✱✱✱ ✓✱✱✱ ✱✱✱ ✱✱✱ ✓✱✱ ✓✱✱ ✱✱✱ ✱✱✱

BP-CP-SU ✱✱✱✱ ✱✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱

BP-CP-TA ✓✱✱✗ ✓✱✱✗ ✓✱✱ ✓✱✱ ✓✱✱ ✓✱✱ ✓✗✱ ✓✗✱

BP-INTV-SS ✓✱✱✗ ✓✱✱✗ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✓✗✱ ✓✗✱

BP-INTV-CI ✱✱✱✱ ✱✱✱✱ ✱✱✱ ✱✱✱ ✓✱✱ ✓✱✱ ✱✱✱ ✱✱✱

BP-INTV-PR ✓✱✱✱ ✓✱✱✱ ✱✱✱ ✱✱✱ ✓✱✱ ✓✱✱ ✱✱✱ ✱✱✱

BP-INTV-SU ✱✱✱✱ ✱✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱ ✱✱✱

BP-INTV-TA ✓✱✱✗ ✓✱✱✗ ✓✱✱ ✓✱✱ ✓✱✱ ✓✱✱ ✓✗✱ ✓✗✱
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(2020) uses finite state automata (FSA) to model string values,
and formalizes several string operations including substring,
length, and startsWith. Boolean values are represented
using the Boolean powerset, and numerical values using intervals.
Negrini et al. (2021) presents TARSIS, an evolution of the FSA

domain that uses automata built over an alphabet of strings
instead of characters, aiming at providing the same precision while
requiring fewer resources. In terms of whole-value analyses, it still
uses the same abstractions for Booleans and integers. Choi et al.
(2006) defines the REGULAR STRINGS domain, a subset of the
regular expressions with efficient widening. The domain is defined
in conjunction with a simple constant propagation domain for
numerical quantities, and the authors exploit it in their definition
of substring. Li et al. (2015) instead introduces a string-specific
intermediate representation (IR) that defines data dependencies
between string variables, with different levels of context sensitivity.
The IR can then be analyzed with several string domains that
just have to provide transformers for the IR constructs. Rather
than a novel analysis, this work constitutes a framework for the
definition of new analyses. Regardless, it is not clear how non-
string values appear within the IR, and how client abstractions can
leverage them.

Several other string analysis techniques exist in the realm of
symbolic execution (Veanes, 2013; Dalla Preda et al., 2015; Han
et al., 2011; Yu et al., 2014; Nguyen et al., 2011; Yu et al., 2008)
and constraint solving (Abdulla et al., 2020; Chen et al., 2019;
Zheng et al., 2013; Abdulla et al., 2019, 2014; Amadini et al.,
2020; D’Antoni and Veanes, 2013; Wang et al., 2018), but they are
orthogonal to our work and are thus not discussed.

Many techniques for combining domains have also been
presented. Cortesi et al. (2013) reports the most common instances
of products (Cartesian, reduced, Granger, and open) that can
be used to combine arbitrary sets of abstract domains, possibly
exchanging information between them. Our framework is an
instance of the open product. Amadini et al. (2018) introduces
a framework aiming at replacing Granger products, achieving
a precision closer to that of the reduced product with fewer
computational requirements. The framework is based on the
choice of a reference domain, i.e., a domain that is at least
as precise as the domains involved in the product. Refinement
between domains is replaced by converting each domain into an
instance of the reference domain, computing their meet, and then
converting the meet back to instances of each domain. However,
this framework is aimed at products of domains abstracting the
same data type rather than different ones. Gulwani and Tiwari
(2006) introduces the logical product, a systematic technique to
combine logical lattices. This requires the underlying theories to
be convex, stably infinite, and disjoint. While the last requirement
is always satisfied in our framework, we do not require either
convexity or stable infiniteness on the domains we consider
(note that the convexity of the set BE(e) is a current limitation
on the information exchange, rather than a requirement of the
domains one can employ). The Astrée static analyzer and the
Verasco formally-verified static analyzer employ communication
channels (Cousot et al., 2007; Jourdan et al., 2015) to exchange
information between numerical abstractions, allowing mutual
refinement between them. The channels act similarly to our

functions G and C: when a domain needs information on the
value of some expression, it can query the input channel to obtain
it (the form taken by the information can vary: it may be an
interval, a linear constraint, . . . ), and the domain’s transformers
also populate output channels with information other domain can
query. While both analyzers use channels to exchange numerical
information, their extension to other data types should be feasible.
The Apron library (Jeannet and Miné, 2009) also has means of
(i) converting a domain instance to a set of constraints, and
(ii) creating a (possibly different) domain instance from a set of
constraints. Once more, these roughly correspond to functions
G and C, but are only used as a form of conversion between
numerical domains instances instead of information exchange.
Finally, the Goblint static analyzer uses queries (Apinis, 2014)
based on constraints to allow domains to ask for information
about expressions from other domains. This workflow is very
similar to the one presented in this work, but, to the best of our
knowledge, it has no theoretical formalization and has not been
employed outside of numerical analyses. All these works were
essential in showcasing how constraints can be used effectively to
exchange information between different abstract domains, possibly
at the cost of some precision. Our framework, and specifically
the set BE(e) and the functions C and G, draws inspiration
from them.

9 Conclusion

This study presents a modular framework for constraint-
based whole-value analyses where existing domains can be
used to provide abstractions of all data types supported by a
programming language. The requirements are minimal: domains
need to implement means for (i) converting their instances to
a set of constraints, (ii) generating instances based on a set of
constraints, and (iii) providing the semantics of expressions with
heterogeneous argument types in terms of constraints. Provided
these requirements are met, several combinations of abstract
domains can be executed with no additional modification to
their code. Moreover, since the constraint-based information
exchange has been proven sound, each combination is guaranteed
to be sound without requiring lifting of the abstract semantics,
which would in turn require additional soundness proofs. An
implementation of the framework is available inside the LiSA
static analysis library. The framework has also been compared
with ad-hoc domain combinations, showcasing the same degree of
precision.

Our work explicitly targets a combination of forward analyses
that are not compositional [i.e., do not run modularly (Cousot
and Cousot, 2002)]. The extension of the framework to both
backward and compositional analyses is left as future work.
Moreover, the constraints set BE(e) considered allow only for
a convex set of constraints: for instance, we are currently
unable to express disjoint ranges for a single integer variable.
While supporting non-convex sets could be trivial (e.g., by
considering sets of sets of constraints instead, where each inner
set represents convex information), special care must be employed
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to ensure soundness. We thus leave such an extension as
future work.
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