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Abstract

Sound static analysis allows one to overapproximate all possible
program executions to infer various properties. However, it requires
quite some e�ort to formalize and prove the soundness of program
semantics. Most software applications developed nowadays are
distributed systems in which di�erent [micro]services communi-
cate through synchronous and asynchronous mechanisms. These
applications are composed of programs developed in many pro-
gramming languages and rely on many technologies. However,
sound static analysis might be particularly promising in distributed
architectures, where exhaustively (or even partially) testing such
systems is often prohibitive. This paper presents our ongoing work
on applying LiSA (Library for Static Analysis) to microservices. So
far, our e�ort has focused on one programming language (Python),
a few libraries (ROS2, pika, FastAPI, Django), and the architec-
tural reconstruction of distributed applications. However, it already
shows some promising results and general patterns that might be
followed to develop such analyses.
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1 Introduction

Static analysis is a technique for reasoning about a program’s run-
time behavior without running it. It relies on a semantic model
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of the concrete executions of the program and on some forms of
abstraction to make the analysis computable w.r.t. some properties
of interest. A sound static analysis overapproximates all possible
executions. When a sound analyzer infers a property, such property
will be satis�ed by all its possible executions [3, 4].

Modern software architectures have been based on several inde-
pendently deployable software units in the last two decades. Those
units can communicate (i) synchronously through APIs [12] and
(ii) asynchronously through messages [6]. Many distributed ar-
chitectures were widely adopted, such as layered (e.g., front-end,
back-end, and database), service-oriented, event-based, microser-
vices, and serverless [18]. Without entering the details of speci�c
architectures, we focus on the types of communications between
di�erent components. In particular, nowadays, most synchronous
communications through APIs are based on the REST pattern and
exchange data in JSON format. Instead, most asynchronous com-
munications through messages are based on the publish-subscribe
pattern supported by di�erent technologies (e.g., Kafka, RabbitMQ).

Existing static analysis techniques primarily focus on applica-
tions formed by a single code base, where the source’s control �ow
is modeled by a set of control-�ow graphs (CFGs), one for each
method. Instead, modern software architectures consist of programs
that can be heterogeneous in terms of frameworks, communica-
tion patterns, and programming languages. More than traditional
static analysis is required to design a static analyzer tool to an-
alyze a whole system. This paper presents our ongoing e�ort in
applying sound static analysis to microservices. Our main goal is to
extend and tailor existing static analysis to new software architec-
ture paradigms. All analyses are implemented in LiSA (Library for
Static Analysis - https://github.com/lisa-analyzer/lisa) to evaluate
the results in practice.

The main challenge we faced during the development of this
work was the vast heterogeneity of technologies and programming
languages adopted nowadays. Since developing a sound static an-
alyzer is time-consuming, we focused on a single programming
language (Python) but supporting di�erent libraries that provide
similar semantic patterns. In particular, we focused on asynchro-
nous communications through the publish-subscribe patterns in
ROS2 applications and pika microservices and synchronous com-
munications through REST APIs in FastAPI and Django. To gener-
alize standard semantics, we extended SARL [8], a domain-speci�c
language to specify the semantics of libraries, applying it to the
abovementioned libraries. Our preliminary experience shows that
adopting an intermediate abstraction layer when de�ning these
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Figure 1: LiSA architecture.

semantics makes tackling systems comprising several di�erent tech-
nologies feasible. Our future work plans to extend this experience
to other programming languages (in particular, Go [16] and C/C++
through LLVM).

Structure. After discussing the background and related work in
Section 2, Section 3 presents LiSA4ROS2[21], a static analyzer tool
that reconstructs the architecture of a distributed robotic applica-
tion, and how we extended it to generic publish-subscribe commu-
nication patterns. The core of our ongoing e�ort on the extension
of this analysis to REST API synchronous communications is pre-
sented by Section 4. Finally, Section 5 concludes.

2 Background and Related Work

Recent work by Cerny and Taibi [22] investigates the challenges
of developing a static analysis tool for microservices, stating that
the available tools are currently minimal. They proposed a four-
step methodology process for developing microservice-aware static
analysis: (i) recognize communication components in code, (ii) es-
tablish microservice intermediate representation, (iii) unify across
platforms, and (iv) interconnect the intermediate representation
of services. Various tools [1, 2] aim to achieve the proposed four-
step methodology, such as Prophet1, a declarative static analysis
tool, and MicroDepGraph2, which analyzes Docker con�guration
�les. However, these tools are unsound by design. In [17], authors
discuss microservice smells and propose an extension to the Ar-
can [10] project that can detect Cyclic Dependencies, Hard-Coded
Endpoints, and Shared Persistence. Unfortunately, Arcan is a closed-
source application. To our knowledge, a sound, language-agnostic
static analysis tool for multi-code-based applications does not exist
yet.

2.1 LiSA

In our work, which spans from ROS2 to microservices, we adopted
LiSA [9, 13, 14]. LiSA permits building sound, language-agnostic,
modular, and extendible static analyzers. LiSA is based on the ab-
stract interpretation framework, which allows for crafting sound
abstractions of programs. The underlying motivations that drove
us to use LiSA are manifold. In particular, LiSA works on an in-
ternal language-agnostic representation of programs. Since our
target applications are multi-code-based (and possibly heteroge-
neous in terms of programming languages) applications, working

1https://github.com/cloudhubs/prophet.
2https://github.com/clowee/MicroDepGraph.

on a standard, language-agnostic intermediate representation of
such programs simpli�es our analysis. Instead of having a dedi-
cated analyzer for every language program and combining all the
analyses to generate the architectural graph, we can use LiSA to
analyze every application component. This allows us to have the
same analysis infrastructure and to share the same logic for all
the code components of the distributed application. To analyze a
source code written in a language L, we need to use a front-end
that converts that code into the LiSA’s internal representation (aka
LiSA Program). LiSA has a dedicated front-end for Python, Rust,
and Golang3, but since it is an open source project, a developer can
build a front-end for a not-already o�cial supported language. As
a second point, LiSA is extensible, which permits extending the
analyzer’s architecture to get more precise results by, for example,
developing a speci�c domain for this type of application. Figure
1 shows the architecture of the LiSA library. Starting from a pro-
gram P written in a language L, we obtain a corresponding LiSA
Program by using a front-end for that speci�c language L. The
LiSA Program consists of a set of Control-Flow graphs (CFGs), one
for each method. A LiSA CFG models the �ow of the instructions
of a method or a function. These instructions are de�ned inter-
nally as LiSA Statements and created by the front-end by parsing
the source code. Every LiSA Statement has its meaning; that is to
say, it represents a speci�c operation or expression in the source
code. The LiSA engine inputs a LiSA Program and evaluates the
program’s behavior starting from the entry point. This evaluation
is performed using an interprocedural analysis that permits the
computation of the �xpoint of a CFG through the semantics of LiSA
Statements. LiSA’s analysis state de�nes an abstract model of the
program’s memory and keeps track of the semantics evaluation
of the program’s statements by reasoning over abstract domains.
The internal implementation of LiSA’s Abstract State is based on
the framework proposed in [7], in which the memory is modeled
using an abstract value domain (that tracks values of program vari-
ables) and an abstract heap domain (that tracks how the dynamic
memory evolves at runtime). A developer can choose to use some
already de�ned abstract domains (such as constant propagation,
shape analysis [19], or taint analysis [5, 20]) or can opt to write
their speci�c abstract domains exploiting LiSA’s modularity and
extendability. To collect valuable information from the analysis
state, such as warnings or code smells, one can employ a checker
to iterate over the semantics of the program to get meaningful
results. For example, as we will see in the following sections, we
use a checker to generate the communication graph of a distributed
application.

3 Publish-subscribe Communications

In this section, we brie�y introduce ROS2 and discuss how we
developed a sound static analysis to infer communications through
the publish-subscribe pattern in LiSA4ROS2, and the similarities
between ROS2 Python libraries and pika, a library tomanageAMQP-
based communications.

3All the o�cial front-ends are available here: https://github.com/orgs/lisa-analyzer.
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3.1 ROS2

The Robot Operating System 2 (ROS2) [11] is the de facto standard
framework for building distributed robotic applications. A ROS2 ap-
plication is composed of a set of distinct autonomous computational
entities, called nodes, that explicitly exchange messages to achieve
a common goal with the possibility to choose di�erent communica-
tion models: (i) publish/subscribe (using topics), (ii) client/server
(using services), and (iii) a preemptable client/server for long tasks
(actions). The nodes of a ROS2 system can be heterogeneous in
terms of the language used to write client applications. A ROS2
node can be written in Python or C++ using the corresponding
client libraries (rclpy for Python and rclcpp for C++). Client libraries
contain API calls to the underlying ROS2 architecture and permit
developers to write applications quickly without thinking about
internal communications and node synchronization.

3.2 LiSA4ROS2

To statically extract the network graph of a ROS2 application, we
developed LiSA4ROS2[21]4. LiSA4ROS2 is a tool that extends the
LiSA library by adding capabilities for analyzing ROS2 source code.
LiSA supports Python code [15], while the support for a C++ front-
end is under development. Therefore, we focused our e�orts on
ROS2 Python code, while the analysis of C++ is left as future work.
LiSA4ROS2 derives XML’s minimal access control policies for every
node from the extracted network graph. An access control pol-
icy enhances the application’s security by blocking a node from
communicating with channels used for purposes outside its own.
LiSA4ROS2 works as follows. First of all, the Python source code of
a node is passed to a front-end module to generate a LiSA program,
that is, an internal representation of the program understandable
by the LiSA library. The obtained LiSA program is then fed to
the LiSA analysis engine, which, for every statement, computes
an over-approximation of its concrete semantics over an abstract
state. For our purpose, we model the abstract state using standard
abstract domains already implemented in LiSA. Speci�cally, we
use a �eld-sensitive point-based heap domain (to keep track of
the allocation of ROS2 entities) and a string constant propagation
analysis (to track entities’ names). Since the internals of the rclpy
library contain complex and highly optimized constructs, getting a
sound approximation of this library’s concrete behaviors is time-
consuming and error-prone. For example, to instantiate a publisher,
we need to call the create_publisher method of a ROS2 node.
This method will create a publisher by calling a binding to a C++
function and setting some variables in both nodes and the newly
created publisher. For our analysis, some of these variables can be
safely ignored. Instead of directly analyzing the source code of rclpy,
we adopted a domain-speci�c language, SARL (Static Analysis Re-
�nement Language) [8], to de�ne a sound approximation of the
ROS2 Python library manually. To extract the architectural graph
(i.e., the network graph) of a ROS2 application, we use a checker
that iterates over the semantics of every statement to �nd the ones
relative to ROS2. For every ROS2 statement that instantiates a ROS2
entity (nodes, subscribers, and publishers), we store the associated
entity in a ROS2 network model, keeping track of the source code

4https://lisa-analyzer.github.io/lisa4ros2-fe/.

location and the name. For publishers, subscribers, and other enti-
ties related to communication, the checker links such entities with
the corresponding owner (aka node). We analyze every node in
isolation, extracting its communication links. Then, we glue the
output of every analysis to obtain the architectural graph of the
application. From the network topology, we derive access control
policies.

An example. From ROS2 tutorials, we considered a minimal exam-
plewhere two ROS2 nodes communicate over a topic. In Figure 2, we
de�ne a ROS2 node named minimal_publisher with a publisher
over the topic topic by invokingmethod Node.create_publisher
(line 8). The node speci�ed in Figure 3 (minimal_subscriber) listens
on the same topic using a subscription created by invoking method
Node.create_subscription (line 8). When a message is received
in the channel, method listener_callback (lines 13-14) is exe-
cuted. LiSA4ROS2 can extract these entities and generate the graph
in Figure 4, where an oval represents a node and a rectangle a
communication channel (i.e., topic). An edge from a node to a topic
means the node registers itself as a publisher and can send messages
over that channel. Vice versa, an edge from a topic to a node means
that the node can listen to the messages sent over that channel by
subscribing to it. This visual representation e�ectively illustrates
the communication architecture within the system, showing which
nodes are interacting through which topics.

1 import rclpy

2 from rclpy.node import Node

3 from std_msgs.msg import String

4

5 class MinimalPublisher(Node):

6 def __init__(self):

7 super().__init__('minimal_publisher ')

8 self.publisher_ = self.create_publisher(String , 'topic ', 10)

9 timer_period = 0.5 # seconds

10 self.timer = self.create_timer(timer_period , self.timer_callback)

11 self.i = 0

12 def timer_callback(self):

13 msg = String ()

14 msg.data = 'Hello World: %d' % self.i

15 self.publisher_.publish(msg)

16 self.get_logger ().info('Publishing: "%s"' % msg.data)

17 self.i += 1

18

19 def main(args=None):

20 rclpy.init(args=args)

21 minimal_publisher = MinimalPublisher ()

22 rclpy.spin(minimal_publisher)

23 minimal_publisher.destroy_node ()

24 rclpy.shutdown ()

25

26 if __name__ == '__main__ ':

27 main()

Figure 2: Python’s ROS2 minimal publisher example

3.3 Extension to Generic Pub-sub

Communications

We extended the analyses described above to AMQP-based appli-
cations, particularly to the pika Python library, the o�cial Python
client library for the RabbitMQ broker. Table 1 highlights similar
operations between rclpy and pika. In rclpy, to declare a publisher,
we use the method create_publisher of a node that will register
the node to a speci�ed topic, identi�ed by the String topic taken
as an argument. In pika, the same thing is done by the method

7
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1 import rclpy

2 from rclpy.node import Node

3 from std_msgs.msg import String

4

5 class MinimalSubscriber(Node):

6 def __init__(self):

7 super ().__init__('minimal_subscriber ')

8 self.subscription = self.create_subscription(

9 String ,

10 'topic ',

11 self.listener_callback ,

12 10)

13 def listener_callback(self , msg):

14 self.get_logger ().info('I heard: "%s"' % msg.data)

15

16 def main(args=None):

17 rclpy.init(args=args)

18 minimal_subscriber = MinimalSubscriber ()

19 rclpy.spin(minimal_subscriber)

20 minimal_subscriber.destroy_node ()

21 rclpy.shutdown ()

22

23 if __name__ == '__main__ ':

24 main()

Figure 3: Python’s ROS2 minimal subscription example

/minimal_subscriber/minimal_publisher rt/topic

Figure 4: Extracted graph of the minimal example.

exchange_declare. However, the main di�erence is that in the
AMQP protocol, we do not have topics; we only have exchanges
and queues. In that case, the exchange_declare enables the cre-
ation of an exchange with a given name (exc) and with a speci�c
type (type). To publish a message on a topic, we use the publish
method of a rclpy publisher. Vice versa, in AMQP, we use the
basic_publish that sends a message (msg) with a speci�c routing
key (key) to a particular exchange identi�ed by its name (exc). The
same thing happens with subscriptions (i.e., consumers): the main
di�erence here is that in rclpy, when we create a subscription, we
also model the consumptions of the messages; since the operation is
atomic, we register a subscription and a callback (cb) with a single
instruction. The exchange-queue binding of AMQP is omitted from
the table since it does not have corresponding ROS2 semantics.

Instead of having a single communication channel between pro-
ducers and consumers as in ROS2, here we have an active external
server (i.e., a broker) that movesmessages from exchanges to queues
while following some rules. We can model this by exploiting the
declaration and exchange-queue binding rules de�ned in the code.
Note that we only sometimes have such information in the code.
If the channels are de�ned as durable, they will survive server’s
restarts, and the client could avoid performing a declaration to
ensure their existence. Despite this, we can get the corresponding
bindings by looking at the code or manually annotating it.

An example. Consider the code in Listings 1 and 2. The �rst code
publishes (lines 6 and 8) something to some exchanges (lines 5
and 7) of an AMQP broker that redirects messages to queues. The
second one consumes (lines 16-19) some queues (lines 9-15). We
can derive the architecture of this application using the same logic
for ROS2 (modeling the pika semantics using SARL and using a
dedicated checker to extract communication entities).

1 import pika

2

3 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost ')

)

4 channel = connection.channel ()

5 channel.exchange_declare('pika.exchange1 ', 'direct ')

6 channel.basic_publish('pika.exchange1 ', 'routingKey1 ', 'Hello World!')

7 channel.exchange_declare('pika.exchange2 ', 'fanout ')

8 channel.basic_publish('pika.exchange2 ', 'routingKeyFanout ', 'Fanout msg')

9 connection.close ()

Listing 1: pika_tests/amqp1.py.

1 import pika

2 import json

3 import uuid

4

5 def callback(ch , method , properties , body):

6 print(body.decode ())

7 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost ')

)

8 channel = connection.channel ()

9 channel.queue_declare('queue1 ')

10 channel.queue_declare('queue2 ')

11 channel.queue_bind('queue1 ', 'pika.exchange1 ', 'routingKey1 ')

12 channel.queue_bind('queue2 ', 'pika.exchange1 ', 'routingKey2 ')

13 channel.queue_declare('queue3 ')

14 channel.queue_bind('queue1 ', 'pika.exchange2 ', 'routingKey3 ')

15 channel.queue_bind('queue3 ', 'pika.exchange2 ', 'routingKey4 ')

16 channel.basic_consume('queue1 ', callback , True)

17 channel.basic_consume('queue2 ', callback , True)

18 channel.basic_consume('queue3 ', callback , True)

19 channel.start_consuming ()

Listing 2: pika_tests/amqp2.py.

4 From LiSA4ROS2 to LiSA4micro(services)

During the development of LiSA4ROS2, we understood that the
semantics we de�ned was quite similar to the one of microservices.
Ultimately, they all communicate through HTTP request/reply mes-
sages, exchange object states in various formats (such as JSON, XML,
and binary), communicate synchronously through REST APIs, and
communicate asynchronously through pub-sub communication
patterns.

Pitfalls. We discussed the problem of soundly analyzing di�erent
languages with one analyzer in Section 2, motivating why LiSA
is a good candidate. To say something more, a unique analyzer
for heterogenous code-base services permits to (i) have a common
logic to perform high-level analyses (i.e., to �nd problems regarding
the architecture, like tight coupling or cyclic dependencies, or to
reconstruct the network architecture), and (ii) to discover bugs and
issues inside every service. Another critical pitfall is that nodes
could communicate in di�erent ways in a microservice architec-
ture. For example, a node could expose a REST API, communicate
with other nodes with the RCP protocol, or use an asynchronous
message-oriented middleware. Even more, the exposed services
can be implemented using di�erent frameworks or libraries: for
example, a Python REST service can be implemented using Flask,
FastAPI, or Django. Developing an analysis that addresses all the
di�erences between these frameworks becomes unpractical. How-
ever, at a high level of abstraction, these frameworks perform the
same function: enable communication.

Our approach. We tackled this heterogeneity of programming
languages and technologies by extending the aforementioned LiSA
SARL. In particular, we introduced new rules to reduce di�erent

8
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Table 1: Comparison of ROS2 and pika

Operation ROS2 Pika

Declare a publisher rclpy.Node.create_publisher(topic, ...) pika.Channel.exchange_declare(exc, type, ...)
Publish a message rclpy.Publisher.publish(message) pika.Channel.basic_publish(exc, key, msg, ...)
Declare a subscription rclpy.Node.create_subscription(topic, cb, ...) pika.Channel.queue_declare(queue, ...)
Consume messages rclpy.Node.create_subscription(topic, cb) pika.Channel.basic_consume(queue, cb, ...)

frameworks to a common abstraction and then used such abstrac-
tion to reason about high-level analysis and reconstruct the archi-
tectural graph. Intuitively, it does not matter if we use Flask or
FastAPI to expose a POST resource. We want to abstract the frame-
work and consider that we are creating a POST resource with a
given name and characteristics. This approach reduces the develop-
ment complexity: there is just a need to write down this reduction
using SARL, modeling how a framework creates a communication
endpoint. This approach can be extended to other communication
paradigms. Consider, for example, the AMQP protocol. Various li-
braries permit communicationwith amessage-orientedmiddleware.
However, we want to track whether a speci�c method of a partic-
ular library sends a message to an AMQP exchange and whether
another permits listening over a queue and receiving messages.

The HTTPService is a synthetic, abstract object that models a
concrete communication entity. Instead of analyzing the actual
semantics of a communication framework, LiSA converts it to one
of its abstractions based on some speci�ed rules. These abstractions
are like a lingua franca with their own methods’ semantics and
attributes. For example, an HTTPService has methods to register
new endpoints in the object, and these methods are called by using
the rewrite logic discussed above. To model requests to an endpoint
(see line 20 of serviceA in Figure 5), we use an HTTPClient. This
approach can also be applied to another communication paradigm,
like AMQP (reducing it to an AMQPClient), RPC, or MQTT.

Table 2 shows the similarities between FastAPI and Flask. To
make it short, they both use annotations over the methods that
listen to HTTP requests, but FastAPI has annotators speci�c for
the type of request (GET, POST, ...), while Flask has a unique an-
notator whose second parameter speci�es what type of requests
it listens to. Using this methodology, we can exploit properties on
the architectural level by working on the extracted graph and also
discover local properties by analyzing the semantics of the source.
Developers who use this methodology can build their own custom
analyses on the graph level and locally by analyzing every service
in isolation and implementing a standard LiSA checker. This dual
approach allows for comprehensive system-level insights while
also providing detailed local information and enabling the capa-
bility to extract interesting properties, like data �ow and cyclic
dependencies.

An example. We developed a prototype implementation showing
the analysis’ desired outcome and investigating the work’s feasi-
bility. As a proof of concept, we target the Python FastAPI library,
and we can reconstruct the architecture of a distributed application.
Here, we proposed a toy example of a microservice architecture.
The application consists of two services, serviceA (Figure 5) and
serviceB (Figure 6).

1 from fastapi import FastAPI , HTTPException

2 from models import Item

3 import json

4 import requests

5

6 app = FastAPI(debug=True)

7

8 @app.get(path = "/item/{ itemID}")

9 def get_item(itemID: int):

10 item = ... #retrieve idemID from the DB

11 return item

12

13 @app.post(path = "/item/")

14 def post_report(item: Item):

15 ... # store item in the DB

16 return item

17

18 @app.get(path = "/report /3")

19 def get_report ():

20 response = requests.get("http :// serviceB :8000/ report /3")

21 return json.loads(response.text)

22

Figure 5: Python source for the toy serviceA example.

1 from fastapi import FastAPI , HTTPException

2 from models import Report

3

4 app = FastAPI(debug=True)

5

6 @app.get(path="/report /{ reportId}")

7 def get_report(reportId: int):

8 report = ... #retrieve reportId from the DB

9 return report

10

Figure 6: Python source for the toy serviceB example.

Service A exposes a GET /item/{itemID} endpoint (line 8) that
retrieves an item from a database and returns it and a POST /item

endpoint (line 13) that adds a given item to the database. In addition,
it exposes a GET /report/3 (line 18) that performs a GET request
to the serviceB. Service B exposes a GET /report/{reportID} end-
point (line 6). Our analysis prototype can extract all these endpoints
and reconstruct the architectural graph, as shown in Figure 7.

Figure 7: The architectural graph of the toy example.

9
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Table 2: Comparison of FastAPI and Flask

Operation Fastapi Flask

Declare a GET endpoint fastapi.FastAPI.get(endpoint, ...) �ask.Flask.route(endpoint, methods=["GET", ...], ...)
Declare a POST endpoint fastapi.FastAPI.post(endpoint, ...) �ask.Flask.route(endpoint, methods=["POST", ...], ...)
Declare a PUT endpoint fastapi.FastAPI.put(endpoint, ...) �ask.Flask.route(endpoint, methods=["PUT", ...], ...)
Declare a PATCH endpoint fastapi.FastAPI.patch(endpoint, ...) �ask.Flask.route(endpoint, methods=["PATCH", ...], ...)
Declare a DELETE endpoint fastapi.FastAPI.delete(endpoint, ...) �ask.Flask.route(endpoint, methods=["DELETE", ...], ...)

5 Conclusion

Our preliminary results show that developing a sound static anal-
ysis for microservices is not a utopia if we consider only one pro-
gramming language, only a few existing technologies, and only
architecture reconstruction as the property of interest. All this is in
a not-yet-production-ready implementation of the analysis.

Future work. First, we are stabilizing our analyses to apply them
in an industrial context. Then, as stated in the introduction, we plan
to extend our approach to Go and C/C++ applications. However,
our �nal goal is to obtain a valuable tool for developers. These
are interested in reports about their code; therefore, we plan to
apply the results of our analysis to detect various types of software
issues. For example, considering an HTTP service, we can perform
a local analysis to determine whether the service has or does not
have API versioning and if it has some hardcoded endpoints (i.e.,
IP and ports). Analyzing the architecture, we can also discover the
presence of cyclic dependencies or tightly coupled services, which
can hinder the scalability and maintainability of the system.
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