IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 September 2024, accepted 7 November 2024, date of publication 11 November 2024,
date of current version 20 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3495535

== survey

General-Purpose Languages for Blockchain Smart
Contracts Development: A Comprehensive Study

LUCA OLIVIERI“1, VINCENZO ARCERI“2, BADARUDDIN CHACHAR"“, LUCA NEGRINI*“1,
FABIO TAGLIAFERRO"”3, FAUSTO SPOTO“4, PIETRO FERRARA"'!, AND AGOSTINO CORTESI"

! Department of Environmental Sciences, Informatics, and Statistics, Ca’ Foscari University of Venice, 30123 Venice, Italy
2Department of Mathematical, Physical and Computer Sciences, University of Parma, 43121 Parma, Italy

3Equixly Srl, 37135 Florence, Italy

4Department of Computer Science, University of Verona, 37129 Verona, Italy

Corresponding author: Vincenzo Arceri (vincenzo.arceri @unipr.it)

This work was supported in part by the Bando di Ateneo per la Ricerca 2022, funded by the University of Parma under Grant
MUR_DM?737_2022_FIL_PROGETTI_B_ARCERI_COFIN, CUP: D91B210 05370003; in part by the Formal Verification of GPLs
Blockchain Smart Contracts; in part by SEcurity and RIghts In the CyberSpace (SERICS) under Grant PE00000014—CUP

H73C2200089001; and in part by Interconnected Nord-Est Innovation Ecosystem (iNEST) Projects funded by PNRR NextGeneration EU
under Grant ECS00000043—CUP H43C22000540006.

ABSTRACT Smart contracts are undoubtedly one of the most successful and popular applications of
the blockchain industry. They consist of computer programs that are stored in blockchain, typically
immutable, allowing the creation of decentralized applications (DApps). Their source code describes how the
blockchain’s global state should evolve as a consequence of input received from transaction requests. There
are two categories of programming languages for writing smart contracts: domain-specific languages (DSLs)
and general-purpose languages (GPLs). The research community has spent a great effort for proposing,
studying, and verifying DSLs, while the same is not true for GPLs applied to blockchain, although the most
popular blockchains adopt them at different levels of the software development. This paper investigates the
use of the most popular GPLs in smart contracts and DApps development. It first overviews blockchains
that use GPLs for writing smart contracts. Then, it provides a taxonomy of how GPLs are used to develop
smart contracts, highlighting limitations and challenges for each type of GPL. The goal of this study is to
provide blockchain practitioners with a better comprehension of GPLs, while shedding light on this class of
programming languages that are widespread in blockchain software.

INDEX TERMS General-purpose programming languages, smart contracts, decentralized applications,
blockchain, distributed ledgers.

I. INTRODUCTION them according to the instructions contained within them,

Blockchain technology is no longer in its infancy. Bitcoin [1]
provided the first successful solution for the double-
spending problem, effectively implementing a network of
programmable money. Later on, Ethereum [2] raised the
interest in enforcing the execution of code through consensus
rules with smart contracts and DApps, the most important
applications of blockchain technology. In a nutshell, they
are computer programs on the blockchain network that can
receive specific inputs from transaction requests, process

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Guidi

and possibly modify the global state of the blockchain. There
are several languages for writing smart contracts and DApps
and they can be divided into two classes: domain-specific
languages (DSLs) and general-purpose languages (GPLs).
DSLs are programming languages specifically designed and
restricted for a given problem domain. An example is
Solidity for the Ethereum blockchain. Instead, as the name
suggests, GPLs are programming languages that are typically
applicable across different software domains. Therefore, they
are not strictly related to the development of smart contracts
and DApps. Examples are Rust, Java, C4+, and Go. In recent
years these have become widespread in the programming of

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by/4.0/

166855

https://orcid.org/0000-0001-8074-8980
https://orcid.org/0000-0002-5150-0393
https://orcid.org/0009-0000-2718-1882
https://orcid.org/0000-0001-9930-8854
https://orcid.org/0000-0002-5904-8768
https://orcid.org/0000-0003-2973-0384
https://orcid.org/0000-0002-4678-933X
https://orcid.org/0000-0002-0946-5440
https://orcid.org/0000-0002-0151-6469

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

smart contracts. In fact, although the majority of the total
value locked (TVL) is in the Ethereum blockchain and is
therefore managed by smart contracts written in Solidity, the
remaining part of TVL is managed by contracts written in
other languages including GPLs. For instance, as reported
by Defil.lama [3], as of mid-2024, smart contracts written in
Rust handled Defi worth more than $8 billion, while smart
contracts written in C, C++4, and Java for several million
dollars [4].

A. RESEARCH SCOPE AND CONTRIBUTION

This paper overviews, analyzes, classifies, and discusses,
at high-level, the GPLs used for developing smart contracts
and DApps, taking into consideration their features, lim-
itations, issues, and applicability. In particular, this paper
will discuss, answer, and argue about the following research
questions:

RQ1: How are GPLs involved in the development of smart
contracts and DApps?

RQ2: Why are GPLs used for programming smart contracts
and DApps? What reasons lead to their choice?

RQ3: What challenges arise from writing smart contracts
using GPLs?

RQ4: What are the current limitations of developing smart
contracts using GPLs?

The main contribution of this paper is:

o to survey the GPLs involved in the smart contract
development for the most popular blockchains;

« to investigate the reasons behind the adoption of GPLs
in the development of smart contracts and decentralized
applications;

« to provide a taxonomy related to the usage of GPLs in
smart contract development;

« to discuss challenges and current limitations for each
classification proposed in the taxonomy.

The motivation of this study comes from the fact that,
while the research community has spent a great effort on
DSLs (for instance, a representative example is the huge
research literature about Solidity), the same has not happened
for GPLs, although, as argued in this paper, most popular
blockchains rely on them.

Hence, the aim of this paper is to focus on GPLs,
in different ways, and with different scopes, in smart contract
and DApp development. We think that this helps reaching
a better comprehension of GPLs in blockchain, highlighting
benefits and potential risks in adopting them and thus helping
practitioners in selecting the more appropriate GPL for their
purposes.

B. PAPER STRUCTURE

The rest of this paper is organized as follows. Section II
describes at high-level the methodology adopted in this study,
the search strategy, and the search findings. Section III
provides an overview of the blockchains that support the
development of smart contracts and DApps through GPLs.

166856

1. Detection of Popular GPLs 3. Search and Filtering

+ TIOBE Index (Top 10) Databases

* PYPLIndex (Top 10) y y
White/Grey literature

2. Queries IEEE Xplore Digital Library
« ACM Digital Library

* SpringerLink

* Science Direct

* Scopus

+ Google Scholar

Specific Queries

Generic Queries

Grey/Black literature

+ Google Search

Blockchains
with P
smart contracts | Filter
written in GPLs

FIGURE 1. Workflow of the search strategy.

Section IV proposes a taxonomy of the different involvements
of GPLs in popular blockchains. Section V investigates the
reasons behind the popularity of this choice. Section VI
analyzes the limitations and challenges of GPLs adoption.
Section VII discuss the performance issues and the lack of
empirical evaluations. Section VIII discusses selected related
works. Finally, Section IX concludes the paper.

Il. METHODOLOGY
We conducted a state-of-the-art investigation to identify
blockchains supporting GPLs for the development and
implementation of smart contracts and DApps.

We structured the search strategy as follow (see Figure 1):
(1) detection of popular GPLs, (ii) definition of queries, (iii)
search and result filtering. Each phase is described below.

A. DETECTION OF POPULAR GPLs
Given the rapid emergence of new programming languages,
this study focuses exclusively on the most widely adopted and
popular GPLs to ensure relevance and practical applicability.
To determine these languages, we consider as reference
two established indexes, namely TIOBE [5] and PYPL [6],
as in June 2024 (see Table 1), that highlight the popularity
of programming languages. In particular, the TIOBE index
considers the number of search engine results for queries
containing the name of a language. Instead, the PYPL index
is computed by checking how often a programming language
tutorial is searched, based on datasets extracted by using
Google Trends.

Hence, we selected only GPLs excluding DSLs (e.g., SQL)
from their ranks.

B. DEFINITION OF QUERIES

We structured our search strategy by querying both specific
and generic keywords on popular academic databases, as we
will explain later. The following keywords were used:

« specific keywords (one for each selected GPL):

-- smart contracts <GPL>, where <GPL> is
the name of the GPL.

VOLUME 12, 2024

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

IEEE Access

TABLE 1. Top 10 popular programming languages.

TIOBE Index PYPL Index (worldwide)
Rank Language Ratings Language Shares
1 Python 15.38% Python 29.06%
2 C++ 10.03% Java 15.97%
3 C 9.23% JavaScript 8.70%
4 Java 8.40% C# 6.73%
5 C# 6.65% C/C++ 6.40%
6 JavaScript 3.32% R 4.75%
7 Go 1.93% PHP 4.57%
8 SQL 1.75% TypeScript 3.00%
9 Visual Basic 1.66% Swift 2.76%
10 Fortran 1.53% Rust 2.50%
- Others languages | 40.12% Others languages | 15.56%

« generic keywords:

-- smart contract general purpose
programming languages

-- smart contract any programming
languages

-- multi programming language smart
contracts

-- survey smart

languages

contract programming

Regarding specific keywords, we performed the queries for
the following GPLs: Python, C++, C, Java, C#, Javascript,
Go, Visual Basic, Fortran, R, PHP, TypeScript, Swift, Rust.

Regarding generic keywords, we also considered multi
programming language because, during the first iter-
ations of the search, we realized that different blockchains
supported more than one GPL.

C. SEARCH AND RESULT FILTERING

The literature review first involved systematical search in
academic databases (i.e., IEEE Xplore Digital Library, ACM
Digital Library, SpringerLink, Science Direct, Scopus, and
Google Scholar) to collect white/grey literature. This required
submitting 18 queries to each database. Then, the results have
been filtered, starting from the year 2008, i.e., from the first
appearance of the blockchain with Bitcoin, and sorted by
relevance, resulting in 582455 references. However, when
we started inspecting the first results, we discovered that the
search engines introduced noise and lacked accuracy in the
results after just a few records. Then, we decided to only
consider the top 10 most relevant records for each query,
i.e., 1019 references of white literature in total (some queries
did return less than 10 records), then, since some queries
reported common results, we removed duplicates, resulting
in 471 references.

Additionally, we decided to collect relevant gray/black
literature as well (e.g., websites, blog posts, and other
non-academic sources of information) through Google
Search, being blockchain technology primarily emerged
from the efforts of practitioners and enthusiasts rather than
academia. Therefore, much information on the state-of-the-
art and new blockchain technologies can only be found
through non-academic sources. Hence, as we previously did,
we performed 18 queries, we filtered from the year 2008 and

VOLUME 12, 2024

selected only the 10 highest ranked results. The result is 180
references.

Finally, blockchains were selected based on their relevance
for the research questions, and coherence with the imple-
mentation of smart contracts and programming languages.
The selection criteria requires that they have at least one
development support of smart contracts or DApps through
GPLs, coming from official sources, popular community
teams, or industrial companies. Therefore, not all popular
blockchains have been covered as they may not support
development via GPLs, such as Bitcoin and Cardano [7] that
only support DSLs [8], [9]. Moreover, we avoided also those
blockchains that support frameworks written in GPLs only
for deployment, such as Ethereum with its SDKs [10] or
unofficial GPL libraries such as Jthereum [11].

Our findings are summarized in Table 2. Note that we
found no results for the following GPLs: Fortran, PHP, R,
Swift and Visual Basic. Specifically, Fortran and Visual
Basic are largely used in legacy software, with little adoption
in modern programming. Instead, the other languages are
GPLs but are widely used in specific contexts, i.e., PHP
is mainly involved for web application development, R for
statistical computing and graphics purposes, and Swift for the
development of Apple applications.

Moreover, for completeness, we reported all the GPLs
supported for each blockchain in Table 2, although the queries
were only made on the most popular ones.

lll. BLOCKCHAIN PLATFORMS
This section provides a brief description of each blockchain
reported in Table 2.

Algorand [12] is a blockchain that provides a com-
mon platform for building products and services in a
fully decentralized, secure, and scalable way. It supports
the execution of smart contracts and DApps through the
Algorand Virtual Machine (AVM). Smart contracts and
smart signatures are written in the Transaction Execution
Approval Language (TEAL), an assembly-like language that
is ultimately converted to AVM bytecode. Moreover, it is also
possible to write smart contracts with Python, by using the
PyTeal library [13], and also with the Reach DSL [14].

Casper Network [15] is a blockchain platform designed
for enterprise and developer adoption, based on Proof-of-
Stake consensus. Casper Network focuses on usability and
upgradability, enabling developers to create upgradable smart
contracts for enterprise applications. On the Casper platform,
developers may write smart contracts and compile them to
WebAssembly binaries.

Concordium [16] is a blockchain designed to balance
privacy with regulatory compliance. It features built-in
identity verification that ensures that users are accountable,
while maintaining privacy through zero-knowledge proofs.
The platform supports smart contracts and tokens, aiming for
secure and scalable transaction processing. A standard library
is provided for writing smart contracts in Rust.

166857

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

TABLE 2. Blockchains platforms with smart contracts written in GPLs.

Platform Framework/Library Languages
Algorand PyTeal Python
Reach Reach
Casper Network Casper Contract Library Rust, TypeScript/AssemblyScript
Concordium Concordium STD Rust
Corda Contract SDK Java, Kotlin
Cosmos Ignite (ex Tendermint Core) Any language
Cosmos SDK Go
CosmWasm Rust
EOSIO EOSIO Contract Development Toolkit | C++
Exonum Exonum Binding Java, Rust
Hotmoka Takamaka Java
Hyperledger Fabric Hyperledger Fabric SDKs Go, Java, Javascript
I0TA I0TA Rust, Go
Internet Computer Protocol (ICP) Network | Canister development kits (CDKs) Rust, TypeScript, Python
Lisk Lisk SDK JavaScript
Neo Neo SDK Python, C#, Go, TypeScript, Java
Polkadot Ink! Rust
QANDplatform QANDplatform Any language
Solana Solana SDK Rust, C, C++
Stellar SDK for Soroban contracts Rust
Stratis Platform Net Core C#
Tezos SmartPy Python, OCaml, TypeScript
LIGO Javascript, OCaml, Pascal, ReasonML
XPR Network Contract SDK TypeScript/AssemblyScript

Cosmos [17] is a public ecosystem of independent
interconnected blockchains. The blockchain nodes are built
by using Tendermint Core [18], recently rebranded as
Ignite [19], a middleware that separates the application logic
from the consensus and networking layers. This allows one
to develop DApps written in any programming language that
supports remote procedure calls, and replicate them on many
machines [20]. However, the recommended development
involves the use of Cosmos SDK, an open-source framework
written in Go for the development of the application layer
of the blockchain. A very peculiar instance of the Cosmos
SDK module is CosmWasm [21], allowing the development
of smart contracts in any language that can be compiled into
WebAssembly (Wasm), a low-level language supported as
compilation target by several GPLs [22]. In particular, the
first and most used language for CosmWasm contracts is
Rust.

EOSIO [23] is an open-source blockchain software pro-
tocol with industry-leading transaction speed and a flexible
utility. It is designed to be customizable and provides both
public and private blockchain deployments, winking at the
enterprise context. It supports the execution of smart contracts
through a WebAssembly Virtual Machine (WasmVM). Smart
contracts can be developed at high-level in C++, by using
EOSIO.CDT (EOSIO Contract Development Toolkit).

Exonum [24] is a blockchain framework designed by
Bitfury for building decentralized applications. It offers
enterprise-level features and custom modules. The smart
contract are called services and can be developed in Java and
Rust [25].

Hotmoka [26] is the abstract definition of a device
able to store objects (data structures) in its persistent
memory (its state) and can execute code on those objects.

166858

Although devices can be different from the nodes of a
blockchain (for instance, they can be an Internet of
Things (IoT) device), the most prominent application of
Hotmoka nodes is, currently, the construction of blockchains
whose nodes are Hotmoka nodes. Hence, such a device
is called a Hotmoka node and such programs are known
as smart contracts, taking that terminology from programs
that run inside a blockchain. The language supported
by Hotmoka’s smart contract is a subset of Java called
Takamaka [27].

Hyperledger Fabric [28] is a popular permissioned
blockchain framework, designed to be adopted in the
industrial context. It is supported by The Linux Foundation
and other contributors such as IBM, Cisco, and Intel. In this
blockchain, smart contracts and DApps are called chaincode
and can be implemented by using the full set of instructions
and features of popular GPLs such as Go, Node.js, and
Java [29].

IOTA [30] is an open-source permissionless distributed
ledger and cryptocurrency with the purpose of protect-
ing the integrity and verifiability of data and values
in the IoT context. It supports the execution of smart
contracts through a virtual machine (VM) and VM plu-
gins. The VM itself is a black box capable of exe-
cuting deterministic code and can be extended dynam-
ically by adding VM plugins. Currently, there are two
such plugins, WasmVM and EthereumVM (EVM). Was-
mVM supports TinyGo (a subset of Go) and Rust.
EthereumVM supports instead the Solidity programming
language.

Internet Computer Protocol (ICP) [31] is a decentralized
blockchain network developed by the DFINITY Foundation,
designed to extend the functionality of the public Internet

VOLUME 12, 2024

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

IEEE Access

by enabling smart contracts and decentralized applications to
run at web speed. In ICP, smart contracts are called canisters
and they are WebAssembly programs with additional features
that allow them to store persistent data, communicate with
users and other canisters, and be managed by entities such as
decentralized organizations.

Lisk [32] is a blockchain application platform to build
interoperable blockchain applications and services with the
Lisk SDK. The Lisk SDK is an open-source and modular SDK
in JavaScript and TypeScript.

Neo [33], rebranded from Antshares, is an open-source
decentralized blockchain with the purpose of creating a
smart economy. That is, it leverages smart contracts to issue
and manage digital assets over the blockchain network.
As reported in its documentation [34], Neo’s tooling and
infrastructure supports several GPLs for smart contracts.
The compilation target of GPLs is the standard NEF (Neo
Execution Format) that can be executed within NeoVM,
a lightweight virtual machine.

Polkadot [35] is a fully-sharded blockchain built to
connect and secure other blockchains, that can be public,
permissionless, based on private consortium chains, or other
Web3 technologies. Polkadot allows one to execute smart
contracts written in WebAssembly. However, they can be
developed by using Ink! [36], a subset of Rust, and then
compiled into Wasm code.

QANplatform [37] is a blockchain platform focused on
security and scalability. The platform leverages quantum-
resistant cryptography, ensuring that it remains secure against
future quantum computer threats. The blockchain infrastruc-
ture is hybrid and combines public and private blockchain
features. Moreover, it proposes a new consensus algorithm
called Proof-of-Randomness. Regarding smart contracts and
DApps, it provides a QVM (QAN Virtual Machine) that
allows the user to execute any kind of application, even a
Linux Kernel [38].

Solana [39] is an open-source blockchain that proposes
a new architecture based on a Proof-of-History (PoH)
algorithm, i.e., a proof for verifying order and passage of
time between events. It supports smart contracts and DApps
written in Solana Berkeley Packet Filter bytecode (Solana
BPF bytecode). As reported in the documentation [40], the
foundation promotes the development through GPLs and
officially supports SDKs for Rust, C, and C4+.

Stellar [41] is a decentralized blockchain platform that
aims to connect financial institutions, payment systems,
and individuals globally through its native cryptocurrency
called Lumens. Stellar operates on a consensus protocol
called Stellar Consensus Protocol (SCP), which ensures fast
transaction confirmation times and scalability. Smart contract
support comes from Project Jump Cannon [42] and it targets
WebAssembly [43].

Stratis Platform [44] is a blockchain-as-a-service (BaaS)
solution designed to simplify the development, deployment,
and management of blockchain applications. It is built
on a blockchain network that is compatible with.NET.

VOLUME 12, 2024

TABLE 3. Target languages for each blockchain.

Blockchain Target Languages

Algorand Transaction Execution
Approval Language (TEAL)

Casper Network WebAssembly

Concordium WebAssembly

Corda Java Bytecode

Cosmos Go

Tendermint (Ignite) | Any language

EOSIO WebAssembly

Exonum Java, Rust

Hotmoka Java Bytecode

Hyperledger Fabric | Go, Java, Javascript

ICP Network ‘WebAssembly

10TA WebAssembly

Lisk JavaScript

Neo Neo Execution Format (NEF)

Polkadot ‘WebAssembly

QANplatform ELF Linux binaries

Solana Solana BPF Bytecode

Stellar WebAssembly

Stratis Platform Common Intermediate Language (CIL) for .Net

Tezos Michelson language

XPR Network WebAssembly

Stratis supports smart contracts development with a subset
of the C# language because smart contracts must exe-
cute deterministically. Hence, the Stratis smart contracts
suite includes a validation tool that checks for any
non-deterministic elements in any smart contracts that one
write.

Tezos [45] is an open-source blockchain based on a PoS
consensus algorithm. It is designed to provide the safety and
code correctness required for assets and other high-value
components. In addition, it provides an upgrade mechanism
based on the will of the community governance. It supports
smart contracts written in the Michelson language, a low-
level stack-based language, with high-level data types and
primitives, and strict static type checking. The blockchain is
also supported by smart contract development platforms such
as SmartPy [46] and LIGO [47]. They allow one to write
smart contracts using popular GPLs and compile them into
Michelson.

XPR Network [48], also known as Proton, is a blockchain
platform designed to simplify and enhance digital payments
and identity verification. The network supports secure iden-
tity authentication, enabling users to link their real identities
with their accounts while maintaining privacy. Transactions
are without fees and XPR Network smart contracts can
be written in Typescript/AssemblyScript and compiled to
WebAssembly.

IV. TAXONOMY

Section III described several popular blockchains that make
use of GPLs for the development of smart contracts and
DApps. However, GPLs are involved in different ways,
depending on the blockchain. To answer question RQ1, it is
necessary to consider the language in which the code is
written by developers. Indeed, many programming languages
can be used at high-level to develop blockchain software.

166859

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

TABLE 4. Taxonomy of GPLs related to the blockchains.

Blockchain Framework/Platform Taxonomy
Algorand PyTeal Meta-programming
Reach Meta-programming
Casper Network Casper Contract Library Meta-programming
Concordium Concordium STD Meta-programming
Corda Contract SDK Restricted language
Cosmos Ignite (ex Tendermint Core) Full language
Cosmos SDK Full language
CosmWasm Meta-programming
EOSIO EOSIO Contract Development Toolkit | Meta-programming
Exonum Exonum Binding Full language
Hotmoka Takamaka Restricted language
Hyperledger Fabric | Hyperledger Fabric SDKs Full language
I0TA I0TA Meta-programming
ICP Network Canister development kits (CDKs) Meta-programming
Lisk Lisk SDK Full language
Neo Neo SDK Meta-programming
Polkadot Ink! Meta-programming
QANDplatform QANDplatform Full language
Solana Solana SDK Meta-programming
Stellar SDK for Soroban contracts Meta-programming
Stratis Platform Net Core Restricted language
Tezos SmartPy Meta-programming
LIGO Meta-programming
XPR Network Contract SDK Meta-programming

However, blockchains typically support only few target
languages for executing programs, as depicted in Table 3.

In order to reason about that, it is possible to classify the
various GPLs involved in the development of smart contracts
and DApps into three macro categories:

o Full languages: the code is written in a GPL without
restrictions and the blockchain uses the same GPL as
target language during the code execution.

o Restricted languages: the code is written in a restricted
subset of a GPL and the same subset is used by the
blockchain during code execution.

o Meta-programming languages: the code is written in a
language that generates a program in another language.
Basically, this happens when a code is written in a GPL
but, later, a framework or a compiler translates it into
another language used by the blockchain as the target
language.

Table 4 shows a classification of GPLs on the blockchain
context based on these macro categories. For instance,
the GPLs involved in the development of smart contracts
and DApps in Hyperledger Fabric are classified as full
languages, because they allow one to write and execute
code by using the same language, without any restriction
or modifications. While for Hotmoka, the GPL is Java but
Takamaka allows one to use only a restricted subset of
its features and instructions, in order to guarantee some
properties to the code execution [49], such as determinism.
Next, other blockchains such as Tezos allow one to write
code in a high-level GPL and run a compiled version of it in
another target language supported by the blockchain. There
are also cases like Polkadot with Ink!, that uses a subset of
Rust, i.e., a GPL that compiles into another target language,
i.e., WebAssembly. In terms of behavior, this is much closer
to the meta-programming language than to a restricted
language.

166860

V. GPLS IN BLOCKCHAIN SOFTWARE

To answer RQ2, it is possible to start by analyzing how
widespread is the use of GPLs and DSLs. As shown in Table 1
and also by checking back the history of these indexes, the
most popular languages are GPLs rather than DSLs.

It is not surprising that the popularity and widespread
diffusion of a language have fundamental implications in
the economic context. In general, it means reduced costs
and time, because fluent developers in a certain GPL can
quickly apply their expertise to a different domain, such
as blockchain and smart contracts. For example, the choice
of Brown et al. [50] to reuse an industry standard like the
JVM for the Corda platform was to make it easier for
banks to reuse their existing enterprise code inside smart
contracts. However, these considerations are not enough
to justify the adoption of GPLs for programming smart
contracts and DApps. In fact, it is a weak assumption to
argue that it is an advantage if developers write smart
contracts in the language they already know. Nowadays,
applications are implemented in multi-language solutions and
senior developers are proactive in learning new languages.
Moreover, according to Deursen et al. [51], DSLs can typ-
ically ensure some guarantee (restrictions, expressiveness,
abstractions, etc.) on a specific problem domain, which
might not be reached by using the full features of a GPL.
In blockchain technology, the payoff is minimal in terms
of cost, if the language exposes the company to severe
economic consequences, such as the immutable deployment
of a vulnerable contract that manages cryptocurrencies or
financial transactions. Hence, a further question needs to be
asked:

Considering the fact that there are custom DSLs
for smart contracts that provide certain guarantees
and properties to the code, how do you justify the
fact that many smart contract frameworks make use
of GPLs?

The choice of the language should be based on the project
to implement or on the type of functionality that the language
makes available to extend, maintain, and evolve the code.
According to Deursen et al. [51], the adoption of DSLs leads
to benefits and disadvantages. A critical point is surely the
difficulty of balancing between DSLs and GPLs constructs
and guarantees.

Let us consider Solidity for the Ethereum blockchain,
one of the most known DSLs in the blockchain context.
The purpose of Solidity was to create a DSL that would
be safer and more easily verifiable than a GPL. However,
it tends not to deviate too much from traditional GPLs.
Indeed, Solidity is a high-level language with syntax and
semantics that are very close to programming languages such
as Java, C++, and Go. However, Solidity has a low level
of abstraction which does not differentiate it much from the
latters. For instance, Solidity specialization can be easily
replicated in GPLs, such as using Java [11], [27], [52], [53].
The main pitfall is that it requires developers to manage

VOLUME 12, 2024

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

IEEE Access

intricate details such as gas costs, storage optimization, and
explicit memory management. Moreover, it also does not
provide good abstractions in some cases [54]. This makes
code development trickly and error-prone, leading to multiple
vulnerabilities [55], that have been actually exploited to
perform fraudulent actions, such as for the DAO attack [56].

Hence, if DSLs and GPLs are similar, it is easier for
developers to choose the latter. In that sense, a widespread
GPL is often supported by wider communities, which con-
sequently leads to many studies, research, tools (debuggers,
monitors, analyzers, etc.), libraries, software utilities, and
IDEs. Nevertheless, as Sect. VI will show, this leads to other
challenges.

Another key concept to highlight is that there is nothing
similar to a standard DSL for programming smart contracts
and DApps. For instance, in the database context, there
are several relational database management systems, but
most of them use the same SQL as the standard language
for database development. Distinct development frameworks
might contain variants of SQL (such as MySQL, PostgreSQL,
etc.), which implement additional methods, instructions,
and macros to facilitate the developer, yet maintain the
common features of the language. However, by providing
the same common instruction set of SQL, they make it
easy to migrate the code to other systems, with minor
changes. It is not uncommon that, in industrial realities,
the code has to be reused or migrated from one system to
another. The same occurs for blockchain-oriented software
(BoS), i.e., software working with an implementation of a
blockchain [57]. Indeed, the target blockchain could change
in favor of another. This can happen for many reasons
such as the increase in transaction fees or changes in the
visibility of blockchain context (private to public or vice
versa). Regarding transaction fees, the cost is typically not
fixed and can swing over time. Hence, it may be convenient
to change blockchain if the costs are too high. Regarding
the visibility context of the blockchain, it drastically impacts
the performance of a blockchain network. For instance,
public blockchains are more secure than private ones due
to their more decentralized and distributed nature, but have
disadvantages such as lower transaction speed and higher
energy consumption [58]. In the absence of standards, GPLs
allow one to facilitate the portability and re-usability of code.
Table 4 shows that there are many frameworks targeting
different blockchains that are covered by the same GPL.
Although each framework certainly has differences, the core
logic of smart contracts is typically implemented in the same
way by using the same programming language, or at most
it requires only small tricks and fixes to be re-used in other
frameworks.

The trend that leads to the use of GPLs for the development
of smart contracts and DApps is therefore not imputable to
a simple answer. Currently, the mix between the still low
maturity of high-level DSLs in the blockchain context, the
lack of standards, and the scarcity of supporting tools brings
the cost-to-benefit ratio towards GPLs.

VOLUME 12, 2024

VI. LIMITATIONS AND CHALLENGES

Turning to RQ3 and RQ4, despite the fact that GPLs are
more mature in terms of development and support, the
main problem is that they were not initially designed for
the development of smart contracts and DApps, exposing
developers to several limitations and challenges, that are
discussed below.

A. FULL VS RESTRICTED LANGUAGES

The classification between full and restricted languages
arises from two different schools of thought. The first one
argues that it is the developer that should be in charge
of the quality and safety of the code and, in turn, the
implications it may have while using the language at its full
expressiveness. Instead, the second one applies restrictions to
the full language in such a way that the developer is protected
from unexpected behaviors or known vulnerabilities that
may arise when using the full language. However, these
restrictions could limit the development by denying useful
implementations. Full languages are typically involved in
controlled environments such as permissioned blockchains,
where only authorized users can perform only specific actions
granted to them by the blockchain administrators. Instead,
restricted languages can be involved also in permissionless
blockchains, where peers can develop and deploy code
without asking for any permission, since the restricted
language forbids a priori specific features of the full language
and more likely prevents to compromise the blockchain.

1) NEW ISSUES RELATED TO FULL LANGUAGES

The use of a full language in the frontier of smart contracts
and DApps development leads to the risk of new and
challenging issues, that usually do not affect DSLs because
they have already been taken into consideration in their
design phase. For instance, let us consider the problem of non-
determinism. Intuitively, a non-deterministic computation
involved during the update of the global state of the
blockchain leads to a consensus issue. Specifically, the
involved transaction fails because the blockchain validators
are unable to agree on the same blockchain update. This
is the case of code invocations that return the current time
of the local machine, since this value may vary between
the different blockchain validators, leading to a consensus
failure. For instance, both Ignite and Hotmoka support the
GPL Java, where several APIs can be non-deterministic.
Hotmoka allows the usage just of a restricted subset of Java
libraries, blocking the use of features not suitable for smart
contracts [49], such as random value functions, disk writes
and reads, or internet connections. These restrictions are
applied a priori and developers will not be able to lift them.
However, as argued in [59] and [60], non-determinism is
unsafe in the blockchain context only if it is global, that is
if it can affect the global state of the blockchain. This means
that certain uses of non-determinism are still safe even in
the blockchain software developoment. For instance, let us

166861

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

suppose that something must be logged on a blockchain node
in your local machine, while the software is running. In the
case of Hotmoka smart contracts, this will not be possible
since the use of local time is not allowed due to the imposed
restrictions, while it would be possible in the case of Cosmos,
where developers are allowed to use the full expressiveness
of the Go language. However, in Ignite and also in Cosmos
DApps, developers have to worry about verifying, in a similar
case, that the time reported in the log does not end up in
the global state of the blockchain. Tools that use formal
verification techniques might be able to detect this kind of
problem [61].

2) CODE RE-ENGINEERING

Given the flexibility and maturity of GPLs, it is possible
to re-engineer the code and standards already imple-
mented using DSLs to obtain technological advantages
and develop more efficient code in terms of performance
and gas consumption in other blockchains. According to
Crosara et al. [52], [53], a trend in blockchain is to apply
standards from platform to platform, easing the design
challenges with trusted and widely-used specifications.
In particular, [52], [53] show how to re-engineer, efficiently,
for the Java Virtual Machine, an implementation of the token
standards from Solidity to Takamaka (restricted language
based on Java). However, this approach is typically possible
only using restricted or full languages, because, in meta-
programming, the high-level optimizations have no effect
unless supported by the target language.

3) CODE VERIFICATION

According to Destefanis et al. [62], smart contracts and
blockchain software engineering are not yet sufficiently
mature, in comparison to traditional software. Smart contracts
and DApps rely on a non-standard software life-cycle [63],
due to the main peculiarities of the blockchain (immutability,
decentralization, and distributability) which make bug fixing
and code patching more difficult. The risk of using unsuitable
tools is to give a false sense of trust to the developers [59].
At best this will be detected in later stages, still creating
delays and increasing the cost of the fix. In the worst case, the
deployment in blockchain could occur and the vulnerabilities
and inefficiencies could be exploited maliciously without any
possibility of fixing them.

Furthermore, the blockchains reported in Table 2 do not
boast a vast ecosystem like mainstream blockchains such as
Ethereum. Therefore, the effort spent by the communities
of practitioners, enterprises, and academics is lower and
consequently the tools are often low-patch or absent.

a: VERIFICATION OF FULL LANGUAGES

The verification of smart contracts coming from blockchain
classified as full languages means directly analyzing the
code written in GPLs. Although GPLs have mature toolbelts,
often these are designed for general use and do not include

166862

specific features for the blockchain context. In addition,
the use of these tools in the blockchain context, with-
out supporting its peculiar features, may lead to critical
implications. If a verification tool does not properly model
blockchain software, it cannot detect issues specific to
the blockchain context, leading to incomplete or incorrect
checks.

In Cosmos, the verification tool support is poor, and
as stated in the documentation of Tendermint Core in the
future they may work with partners to create new tools [64].
GoLiSA [59], [60] proposes an information flow static
analysis based on formal methods to detect issues of non-
determinism. Instead, Crypto.com [65] provides a query suite
for scanning common bug patterns in Cosmos SDK-based
applications checking a set of CodeQL code analysis rules.
However, according to Surmont et al. [66], this suite requires
improvements to reduce the false positive ratio.

In Hyperledger Fabric, the potential risks during the devel-
opment of smart contract are several [67], [68], ranging from
general issues related to GPLs such as non-determinism [60]
to more specific ones that are framework-related such as
phantom reads [69]. Both linters and more specific tools
are available for this platform depending on the problem.
For instance, Chaincode Analyzer [70] and Revive"CC [71]
provide mainly syntax-based checks for quick code analysis
based on an abstract syntax tree investigation. Instead,
semantic-based tools such as GoLiSA [60], [69] and
HFCCT [72] ensure a more in-depth investigation of the
code thanks to abstract interpretation [73] and symbolic
execution [74], respectively.

Regarding Exonum, Lisk and QANplatform, to the best
of our knowledge, currently, we have found no evidence of
specific analyzers or verifiers for these blockchain platforms.

b: VERIFICATION OF RESTRICTED LANGUAGES

In this case, the verification is carried out directly on a subset
of the GPL used. Therefore typically the instructions to be
covered during the analysis are fewer. Moreover, several
critical security issues are defused by the restrictions.

For instance, in Hotmoka, currently, there is no support for
standalone analyzers. However, the static analyzer embedded
in the compiler of Takamaka smart contracts [27], [49]
also performs black-listing to ensure determinism and
constraint-based checks to avoid re-entrancy issues. On the
other hand, exceptions are triggered at runtime in the case of
numerical overflows.

Instead, as far as we know, currently, we have found no
analyzers or verifiers that are specific for Corda and Stratis
platforms.

B. META-PROGRAMMING LANGUAGES
Meta-programming is widely used in several blockchains,
because it typically allows one to develop in different popular
high-level languages and then compile them in a single target
language, generally at low-level.

VOLUME 12, 2024

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

IEEE Access

1) INFORMATION LOSS

The switch from high to low-level languages can imply a
loss of information, making it difficult to understand, reverse
engineer, analyze and verify blockchain software. High-level
languages, for their nature, tend to approximate semantics
through compact instructions, types, annotations, etc. Instead,
low-level languages have restricted set of instructions and
must make explicit all the operations to perform during the
execution, therefore losing expressiveness and increasing the
code verbosity. For instance, this is a well-known problem in
WebAssembly, because the recovery of high-level function
types from WebAssembly binaries is challenging [75].

2) COMPILATION AND SEMANTIC ISSUES

As already reported above, meta-programming involves at
least two languages, a source and a target language. If these
are different, then compilation problems may occur, as the
semantics of certain operations may not be compiled from
one language to another. In this scenario, an interesting
case of study is SmartPy and the Michelson language.
SmartPy is a framework to develop Tezos smart contracts in
Python, constantly in development and improvement. While
it supports many Python APIs, there is no direct compilation
to Michelson from them. Hence, to overcome this problem
within the compilation into Michelson, these functions are
resolved at compile-time [76] and the results are hardcoded in
the Michelson compiled program. Here, it is possible to note
two main problems.

The first and more immediate one is that, while analyzing
the Michelson source code, the use of Python APIs cannot be
retrieved from the Michelson source code, since they are lost
during the compilation process described above.

The second one is subtler and involves the stage of
resolution described above. If the value of a function call
cannot be computed at run time, but is hardcoded at compile
time, then the developer should check if its return value is
actually constant. Let us explain this by means of the example
in Figure 2a. It is a smart contract written in SmartPy, that
gets initialized with a numerical parameter myParameterl
through function__init___ atline 6. This value can later be
changed through function myEntryPoint at line 11. The
myEntryPoint function relies on random. randint at
line 13, a standard Python API that cannot be compiled into
Michelson, since the latter does not support instructions to
generate random numerical values. However, the SmartPy
framework silently compiles this Python contract without a
single warning. Figure 2a shows the result of the compilation;
random. randint has been evaluated at compile-time and,
in this case, the value seven is hard-coded at its place, at line 8
of Figure 2b. Consequently, when running the Michelson
code, the latter will not add a random value, as expected by
the Python programmer, but rather, always, seven. Moreover,
the compiled Michelson program may differ at each compi-
lation, since the value chosen for the random function will

vary.

VOLUME 12, 2024

3) TARGET LANGUAGE ISSUES

Another issue concerning meta-programming is related to the
fact that the target language might not be a DSL designed for
the blockchain context, hence it does not necessarily place
guarantees on the execution of the code, which is not checked
during the meta-programming phase and can lead to bugs
and vulnerabilities. Let us consider the case of WebAssembly.
As reported in the documentation [77], it is designed to
enable high-performance applications on the web. It was later
adopted to run on different blockchain platforms for the fol-
lowing key factors: a high-performance execution, a compact
representation, and platform independence. Although it has
several reasons for being adopted in the blockchain context,
the language is still exposed to potential risks, such as non-
determinism [78] or numerical overflow [79]. Another pitfall
of meta-programming includes the fact that a certain program
that is compiled from a GPL to the target language may not
preserve the same semantics. For instance, suppose to use the
Python3 language for meta-programming and WebAssembly
or Ethereum bytecode as the target language. Python3 allows
one to represent potentially unbound integers [80]. Instead,
WebAssembly and Ethereum bytecode only support bounded
integers [81], [82]. This means that the compilation of
some instructions related to integer values could fail, even
silently. Therefore, in the worst case, the compilation could
be successful but the execution of arithmetic operations could
be subject to vulnerabilities. For instance, this was the case of
the EOSIO blockchain that was affected by such an integer
overflow vulnerability [79].

4) CODE VERIFICATION

As for blockchains that support meta-programming, the
software verification toolbelt typically includes verifiers that
directly analyze the target language of the blockchain. The
reasons for this choice are multiple [83]: (i) a more faithful
analysis because it is the analyzed code that actually will
be executed, (ii) it enables the analysis when the source
code is not available, (iii) it avoids redundant work already
performed by the compiler such as name resolution and type
checking, (iv) the semantics of source code is expanded
by the compiler in the target code. However, the program
representation could be challenging, especially for low-level
target languages [83].

In Algorand, MATH [84] performs static analyses targeting
TEAL language to detect math exploits and byte subtraction
vulnerabilities. Tealer [85] builds control-flow graphs
from the TEAL code applying a sort of pattern-matching
search based on regular expression to detect vulnera-
bilities such as missing validation issues and unpro-
tected contacts. Instead, Panda [86] proposes a static
analysis based on the symbolic execution of TEAL
contracts.

In EOSIO, EOSFuzzer [87] applies black-boxing verifica-
tion to detect smart contract vulnerabilities through fuzzing
techniques. While EOSAFE [88] and WANA [89] involve

166863

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

import smartpy as sp

parameter (unit $myEntryPoint);

1
2 1

3 import random 2 storage int;

4 # A cl f contract 3 code

5 class MyContract (sp.Contract) : 4 {

6 def __init_ (self, myParameterl): 5 CDR; # @storage

7 self.init (myParameterl=myParameterl) 6 # == myEntry

8 7 # self.data.r @stor e
9 # An entry point, i.e., a me e receiver 8 PUSH int 7; # ir

10 # (contracts react) 9 ADD; # in

11 @sp.entry_point 10 NIL operation; # list opera int

12 def myEntryPoint (self): 11 PAIR; # pair (list operation) int
13 self.data.myParameterl += random.randint (0,10) 12 };

(a) Python code

FIGURE 2. An issue related to meta-programming from SmartPy.

symbolic execution on Web Assembly to detect issues such
as fake tokens and receipts.

In Solana, FuzzDelSol [90] proposes fuzzing verification.
VRust [91] analyzes Rust’s mid-level intermediate repre-
sentation of smart contract code for validating untrustful
input accounts. Instead, Solana Certora Prover [92] verifies
conditions (i.e., logical formulas) with a solver based
on satisfiability modulo theories from an LLVM-based
intermediate representation of contracts written in Rust.

In Tezos, MichelsonLiSA [83], [93] and MOPSA [94]
provide semantic checks based on abstractions targetting
Michelson language for the static detection of smart contract
issues. Mi-Cho-Coq [95] ensures the functional correct-
ness of contracts through the Coq proof assistant. While,
Helmholtz [96] proposes a refinement-type approach for the
verification of Michelson programs, that discards verification
conditions with an SMT solver.

Finally, to the best of our knowledge, we have found
currently no evidence of specific analyzers or verifiers for
Casper Network, Concordium, ICP-Network, IOTA, Neo,
Stellar, and XPR Network.

VIi. PERFORMANCE EVALUATION

According to Kruglik et al. [97] low performance and lack
of scalability are important problems of modern blockchain
systems. In smart contracts, they are crucial because have a
direct impact on transaction costs, execution speed, and the
overall efficiency of the blockchain, ensuring that DApps run
smoothly and cost-effectively.

Choosing one programming language rather than another
can have different implications at performance and scalability
levels. This is especially true for blockchains that allow one to
support multiple programming languages for smart contract
development. Indeed, there may be differences for example
in terms of throughput, latency, and memory depending on
the language executed. Consider for instance Hyperledger
Fabric that allows the execution of smart contracts written
in Go, Javascript, and Java. According to Foschini et al. [98],
the Go language is the most performing one, while Java is
the worst with, in some cases, a performance degradation of
almost double compared to other languages. The probable

166864

(b) Michelson code

reasons are that Go is also the language used to implement
the Hyperledger Fabric so it is probably optimized, while Java
requires launching a virtualized environment (i.e. Java Virtual
Machine) which typically takes more time and resources.

Regarding the meta-programming, the choice of program-
ming language has less impact. In fact, the performance of
the blockchain does not directly depend on the GPL chosen
but on the target language which in most cases is always the
same. Then, what really impacts performance is the compiler
that can provide code optimizations in different ways. For
instance, for Web Assembly, there are many compilers that
support GPLs but some optimize more than others ensuring
the better performances but there is always to consider the
trade-off between optimizations, support, communities, and
documentation [99].

However, currently, the existing literature does not provide
empirical evaluations for most of the identified blockchains,
so in-depth investigations regarding the intersection between
the performances of languages and blockchains were not
possible due to the lack of data.

VIil. RELATED WORK

This work classified and discussed GPLs for smart contracts
and DApps. To the best of our knowledge, there are very
few academic studies that classify blockchain programming
languages, especially in relation to GPLs.

In particular, Varela-Vaca et al. [100] propose a mapping
study and a general snapshot of the languages for smart
contracts, emphasizing the importance of grey literature (i.e.,
white papers, reports, documentation, working papers, etc.).
While, Fraga-Lamas et al. [101] investigate the blockchain
impact in the Industry 5.0 also proposing a mapping
of plaforms supporting smart contracts written in several
languages including GPLs.

A. SURVEYS ON DSLS

Some research papers, reported below, investigate and survey
DSLs, without explicitly considering GPLs. Alam et al. [102]
survey the state-of-art of DSLs introduced in literature since
2015, also providing a comparative analysis based on their
application target, development stage, and offered features.

VOLUME 12, 2024

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

IEEE Access

TABLE 5. Summary of the main research questions and answers discussed in this paper.

Question

Answer

RQ1: How are GPLs involved in the development of smart contracts and
DApps?

Al: GPLs are involved in different ways depending on the blockchain.
They can be categorized in three macro categories: full languages (GPL
without any restriction), restricted languages (subset of GPL), and meta-
programming (development using GPL, compilation in another target lan-

guage).

RQ2: Why are GPLs used for programming smart contracts and DApps?
What reasons lead to their choice?

A2: The main factors are the popularity of GPLs, the reduced learning curve,
code reuse, their wide toolbelts (debug and monitoring tools, libraries, etc.)
and the lack of popular DSLs with a greater level of abstraction.

RQ3: What challenges arise from writing smart contracts using GPLs?

A3: The adoption of GPLs has introduced several challenges. For example:
efficient and secure code development, software reengineering, and the de-
velopment of new techniques that support analysis, verification, and reverse
engineering of smart contracts and DApps.

RQ4: What are the current limitations of developing smart contracts by
using GPLs?

A4: GPLs were not initially designed for blockchain software. This leads to
several issues such as the emergence of new vulnerabilities, the loss of infor-
mation related to compilation, limited features, etc. Furthermore, the tools
that support GPLs are mature in terms of development, but typically cover
only general issues, without supporting specific features for the blockchain
context.

Parizi et al. [103] provide a survey about programming
languages used for smart contract development, focusing on
three DSLs, namely Solidity, Pact, and Liquidity, focusing
on their usability and security aspects. Seijas et al. [104]
overview scripting languages used in existing cryptocurren-
cies, focusing on those for Bitcoin, Nxt, and Ethereum.
Zou et al. [105] analyze the current state and potential chal-
lenges developers are facing in developing smart contracts
on blockchains, highlighting the limitations of DSLs such
as Solidity. Bartoletti et al. [54] describe the programming
languages related to smart contract development of the
major permissionless blockchain commenting on the Python
dialects used for Tezos and Algorand.

B. SURVEYS ON BLOCKCHAIN SECURITY

The research community has proposed several studies and
surveys about the security of blockchain, even though they
do not explicitly investigate programming languages used
to build blockchain software. These are reported below.
In [106], the authors discuss different technologies embedded
in blockchains, such as consensus algorithms, public key
cryptography, and hash functions used in blockchain, with
a focus on their security aspects, providing a survey about
the types of attacks that affected blockchains, the state-of-
art analysis tools that have been proposed over the years
to cope with those attacks, and a qualitative comparison
between these tools, based on the number of vulnerabilities
detected. Similarly, [107] surveys blockchain technology
until the end of 2019, also presenting the most popular
blockchain applications. Also [108] is a survey about security
aspects of blockchain, such as availability and integrity, but it
focuses on the use of blockchain within information systems.
As far as information systems are concerned, it reviews
blockchain security in this context at three different stages,
at the process, data, and infrastructure levels, drawing future
research directions on blockchain security, with a particular
focus on business and industrial-related issues.

VOLUME 12, 2024

IX. CONCLUSION

To the best of our knowledge, this is the first survey about
GPLs in blockchain software. In particular, it investigates
which GPLs are officially involved in smart contract and
DApps development, for the most popular blockchains, and
discusses why they have been adopted by the blockchain
community. Therefore, it provides a taxonomy capturing
how GPLs are involved in blockchain software development,
namely as full languages, restricted languages, or meta-
programming languages. Based on this taxonomy, it presents
challenges and current limitations of adopting GPLs for
blockchain software development. Table 5 summarizes the
research questions set at the beginning of this paper and the
corresponding answers that it provides.

Future research directions may investigate other aspects
of blockchain related to GPLs such as potential security
risks, cross-blockchain communications and the support to
external information sources. They may also focused on the
collection and analysis of empirical data to quantitatively
understand which GPLs are most used and widespread
by blockchain communities, what are the best performing,
etc. Furthermore, other blockchain-like technologies have
emerged in recent years such as ledger databases [109] that
combine some blockchain features with more traditional
database techniques. While they do not currently include
smart contract execution, they do take advantage from
common database languages, such as SQL dialects, and not
strictly specific DSLs to perform data operations.

REFERENCES

[1] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] V. Buterin, “A next-generation smart contract and decentralized applica-
tion platform,” White Paper, 2014. [Online]. Available: https://ethereum.
org/en/whitepaper/

[3] DefilLlama. Defillama and Our Methodology. Accessed: Jun. 2024.
[Online]. Available: https://docs.llama.fi/#our-methodology

[4] Breakdown by Smart Contract Languages. Accessed: Jun. 2024. [Online].
Available: https://defillama.com/languages

166865

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

[5

[6

[7

[8]

9

[10

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

TIOBE. TIOBE Index. Accessed: Jun. 2024. [Online]. Available:
https://www.tiobe.com/tiobe-index/

Pierre Carbonnelle. PYPL Index. Accessed: Jun. 2024. [Online]. Avail-
able: https://pypl.github.io/PYPL.html

Cardano. Cardano WebPage. Accessed: Aug. 2024. [Online]. Available:
https://cardano.org/

A. M. Antonopoulos, Mastering Bitcoin: Programming the Open
Blockchain, 2nd ed. Sebastopol, CA, USA: O’Reilly, 2017.

Cardano. Cardano Documentation—Programming Languages.
Accessed: Aug. 2024. [Online]. Available: https://developers.cardano.
org/docs/smart-contracts/#programming-languages

Ethereum Foundation. Ethereum Documentation—Programming Lan-
guages. Accessed: Jul. 2022. [Online]. Available: https://ethereum.
org/en/developers/docs/programming-languages/

Jthereum. Jthereum—Documentation. Accessed: Jun. 2024. [Online].
Available: https://jthereum.com/documentation

J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theor. Comput. Sci., vol. 777, pp. 155-183, Jul. 2019, doi:
10.1016/j.tcs.2019.02.001.

Algorand. PyTeal Documentation. Accessed: Aug. 2024. [Online].
Available: https://pyteal.readthedocs.io/en/stable/

Reach.sh. Reach Documentation. Accessed: Jul. 2022. [Online]. Avail-
able: https://docs.reach.sh/

Casper Network. White Paper. Accessed: Jun. 2024. [Online]. Available:
https://backend.casper.network/assets/0f7730f2-c480-43be-b332-
242567dd95bc?download

Concordium. Technology. Accessed: Jun. 2024. [Online]. Available:
https://www.concordium.com/technology

J. Kwon and E. Buchman, “Cosmos whitepaper,” Tech. Rep., 2019.

E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, Univ. Guelph, Guelph, ON, Canada,
2016.

Ignite. Ignite Documentation. Accessed: Aug. 2024. [Online]. Available:
https://docs.ignite.com/

E. Buchman, “Byzantine fault tolerant state machine replication in any
programming language,” in Proc. ACM Symp. Princ. Distrib. Comput.,
New York, NY, USA, 2019, p. 546, doi: 10.1145/3293611.3338023.
CosmWasm. CosmWasm Documentation. Accessed: Jul. 2022. [Online].
Available: https://docs.cosmwasm.com/docs/1.0/

WebAssembly. Webassembly —Documentation—Developers — Guide.
Accessed: Aug. 2024. [Online]. Available: https://webassembly.
org/getting-started/developers-guide/

EOS.IO. EOS.10 White Paper. Accessed: Aug. 2024. [Online]. Available:
https://github.com/EOSIO/Documentation/blob/master/Technical
‘WhitePaper.md

Bitfury Group Limited. Exonum: Byzantine Fault Tolerant Pro-
tocol for Blockchains. Accessed: Aug. 2024. [Online]. Available:
https://bitfury.com/content/downloads/wp_consensus_181227.pdf
Exonum Services. Accessed: Aug. 2024. [Online]. Available:
https://exonum.com/doc/version/latest/architecture/services/

Fausto Spoto. Hotmoka Github Repository. Accessed: Aug. 2024.
[Online]. Available: https://github.com/Hotmoka/hotmoka/
blob/master/README.md

F. Spoto, “A Java framework for smart contracts,” in Proc. 3rd Wokshop
Trusted Smart Contracts (WTSC) (Lecture Notes in Computer Science),
vol. 11599, Saint Kitts, Nevis. Cham, Switzerland: Springer, Feb. 2019,
pp. 122-137, doi: 10.1007/978-3-030-43725-1_10.

Hyperledger. Hyperledger Fabric Documentation. Accessed: Aug. 2024.
[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.4/

Hyperledger Fabric Documentation. Accessed: Aug. 2024. [Online].
Available: https://hyperledger-fabric.readthedocs.io/en/release-2.2/block
chain.html#what-is-hyperledger-fabric

S. Popov and Q. Lu, “IOTA: Feeless and free,” [EEE Block
chain Tech. Briefs, Jan. 2019. [Online]. Available: https://blockchain.
ieee.org/technicalbriefs/january-2019/iota-feeless-and-free

Internet Computer. White Paper. Accessed: Jun. 2024. [Online]. Avail-
able: https://internetcomputer.org/whitepaper.pdf

Liks. Liks GitHub Repository. Accessed: Aug. 2024. [Online]. Available:
https://github.com/LiskHQ/lisk-core#lisk-core

Neo. Neo White Paper. Accessed: Jul. 2022. [Online]. Available:
https://docs.neo.org/v2/docs/en-us/basic/whitepaper.html

166866

[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Neo Team. NEO Documentation—Smart Contracts. Accessed: Jul. 2022.
[Online]. Available: https://neo.org/technology#smart-contracts
Polkadot. Polkadot White Paper. Accessed: Jul. 2022. [Online]. Avail-
able: https://polkadot.network/PolkaDotPaper.pdf

Parity Technologies. Ink! Documentation. Accessed: Aug. 2024.
[Online]. Available: https://github.com/use-ink/ink-docs

QAN Platform. QAN Platform—White Paper. Accessed: Jun. 2024.
[Online]. Available: https://learn.qanplatform.com/papers/white-paper
[QVM] Multi-Language Smart Contracts. Accessed: Jun. 2024.
[Online]. Available: https://learn.qanplatform.com/developers/qvm-
multi-language-smart-contracts

Anatoly Yakovenko. Solana: A New Architecture for a High Perfor-
mance Blockchain V0.8.13. Accessed: Aug. 2024. [Online]. Available:
https://solana.com/solana-whitepaper.pdf

Solana. Solana Getting Started With Solana Development. Accessed:
Aug. 2024. [Online]. Available: https://solana.com/news/getting-started-
with-solana-development

Stellar Development Foundation. Stellar Documentation—Intro to Stel-
lar. Accessed: Aug. 2024. [Online]. Available: https://www.stellar.
org/learn/intro-to-stellar

Stellar Official Blog—Smart Contracts on Stellar Why Now? Accessed:
Aug. 2024. [Online]. Available: https://stellar.org/blog/smart-contracts-
on-stellar-why-now ?locale=en

Stellar Official Blog—Project Jump Cannon Choosing Wasm? Accessed:
Aug. 2024. [Online]. Available: https://stellar.org/blog/project-jump-
cannon-choosing-wasm?locale=en

STRATIS Platform. White Paper. Accessed: Jun. 2024. [Online].
Available: https://www.stratisplatform.com/files/Stratis_ Whitepaper.pdf
V. Allombert, M. Bourgoin, and J. Tesson, “Introduction to the tezos
blockchain,” in Proc. Int. Conf. High Perform. Comput. Simulation
(HPCS), Jul. 2019, pp. 1-10, doi: 10.1109/HPCS48598.2019.9188227.
SmartPy. SmartPy Documentation. Accessed: Aug. 2024. [Online].
Auvailable: https://smartpy.io/docs/

LIGO. LIGO Documentation. Accessed: Aug. 2024. [Online]. Available:
https://ligolang.org/docs/intro/introduction

XPR Network. Introducing XPR Network. Accessed: Jun. 2024. [Online].
Available: https://xprnetwork.org/blog/introducing-xpr-network

F. Spoto, “Enforcing determinism of Java smart contracts,” in
Proc. 4th Wokshop Trusted Smart Contracts (WTSC) (Lecture
Notes in Computer Science), vol. 12063. Kota Kinabalu, Malaysia:
Springer, Feb. 2020, pp.568-583, doi: 10.1007/978-3-030-54455-
3_40.

R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: An
introduction—White paper,” R3 CEV, vol. 1, no. 15, p. 14, Aug. 2016.
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf

A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6,
pp. 26-36, 2000, doi: 10.1145/352029.352035.

M. Crosara, L. Olivieri, F. Spoto, and F. Tagliaferro, ‘“Re-engineering
ERC-20 smart contracts with efficient snapshots for the Java virtual
machine,” in Proc. 3rd Int. Conf. Blockchain Comput. Appl. (BCCA),
Nov. 2021, pp. 187-194, doi: 10.1109/BCCA53669.2021.9657047.

M. Crosara, L. Olivieri, F. Spoto, and F. Tagliaferro, ““Fungible and non-
fungible tokens with snapshots in Java,” Cluster Comput., vol. 26, no. 5,
pp. 2701-2718, Oct. 2023, doi: 10.1007/s10586-022-03756-3.

M. Bartoletti, L. Benetollo, M. Bugliesi, S. Crafa, G. D. Sasso,
R. Pettinau, A. Pinna, M. Piras, S. Rossi, S. Salis, A. Spano,
V. Tkachenko, R. Tonelli, and R. Zunino, ‘“Smart contract lan-
guages: A comparative analysis,” Future Gener. Comput. Syst.,
vol. 164, Mar. 2025, Art.no. 107563, doi: 10.1016/j.future.2024.
107563.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts (SoK),” in Principles of Security and Trust, M. Maffei
and M. Ryan, Eds. Berlin, Germany: Springer, 2017, pp. 164—186, doi:
10.1007/978-3-662-54455-6_8.

N. Popper, “‘A hacking of more than $50 million dashes hopes in the world
of virtual currency,” The New York Times, vol. 17, Jun. 2016.

S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-
oriented software engineering: Challenges and new directions,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017,
pp. 169-171, doi: 10.1109/ICSE-C.2017.142.

VOLUME 12, 2024

http://dx.doi.org/10.1016/j.tcs.2019.02.001
http://dx.doi.org/10.1145/3293611.3338023
http://dx.doi.org/10.1007/978-3-030-43725-1_10
http://dx.doi.org/10.1109/HPCS48598.2019.9188227
http://dx.doi.org/10.1007/978-3-030-54455-3_40
http://dx.doi.org/10.1007/978-3-030-54455-3_40
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1109/BCCA53669.2021.9657047
http://dx.doi.org/10.1007/s10586-022-03756-3
http://dx.doi.org/10.1016/j.future.2024.107563
http://dx.doi.org/10.1016/j.future.2024.107563
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1109/ICSE-C.2017.142

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

IEEE Access

[58]

[59]

[60]

[61]

[62]

[63]

[64

[65]

[66]

[67]

[68]

[69]

[70]

(71

[72]

[73]

[74]

[75]

[76]

Y. Bakos and H. Halaburda, ““Tradeoffs in permissioned vs permissionless
blockchains: Trust and performance,” SSRN, Feb. 2021. [Online].
Available: https://papers.ssrn.com/abstract=3789425

L. Olivieri, F. Tagliaferro, V. Arceri, M. Ruaro, L. Negrini, A. Cortesi,
P. Ferrara, F. Spoto, and E. Talin, “Ensuring determinism in blockchain
software with GoLiSA: An industrial experience report,” in 1/t ACM
SIGPLAN Int. Workshop State Art Program Anal. (SOAP), San Diego,
CA, USA, L. Gonnord and L. Titolo, Eds. New York, NY, USA: ACM
Press, 2022, pp. 23-29, doi: 10.1145/3520313.3534658.

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi,
and F. Spoto, “Information flow analysis for detecting non-determinism
in blockchain,” in Proc. 37th Eur. Conf. Object-Oriented Pro-
gram. (ECOOP) (Leibniz International Proceedings in Informatics),
vol. 263, K. Ali and G. Salvaneschi, Eds. Dagstuhl, Germany:
Schloss Dagstuhl-Leibniz Center for Informatics, 2023, p.23, doi:
10.4230/LIPIcs. ECOOP.2023.23.

L. Olivieri and F. Spoto, “Software verification challenges in the
blockchain ecosystem,” Int. J. Softw. Tools Technol. Transf., vol. 26,
pp. 431-444, Jul. 2024, doi: 10.1007/s10009-024-00758-x.

G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, “Smart contracts vulnerabilities: A call for blockchain
software engineering?” in Proc. Int. Workshop Blockchain Oriented
Softw. Eng. (IWBOSE), Mar. 2018, pp.19-25, doi: 10.1109/1W-
BOSE.2018.8327567.

M. A. Mahdi H. Miraz, “Blockchain enabled smart contract based
applications: Deficiencies with the software development life cycle
models,” Baltica J., vol. 33, pp. 101-116, Apr. 2020.

T. Inc. (2022). What is Tendermint: A Note on Determinism. Accessed:
2024. [Online]. Available: https://github.com/tendermint/tendermint/
blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/
what-is-tendermint.md#a-note-on-determinism

Crypto.com. Cosmos SDK CodeQL. Accessed: Aug. 2024. [Online].
Available: https://github.com/crypto-com/cosmos-sdk-codeql

J. Surmont, W. Wang, and T. V. Cutsem, “Static application security
testing of consensus-critical code in the cosmos network,” in Proc. 5th
Conf. Blockchain Res. Appl. Innov. Netw. Services (BRAINS), Oct. 2023,
pp- 1-8.

K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, ‘“Potential
risks of hyperledger fabric smart contracts,” in Proc. IEEE Int.
Workshop Blockchain Oriented Softw. Eng. (IWBOSE), Feb. 2019,
pp. 1-10.

P.Lv, Y. Wang, Y. Wang, and Q. Zhou, “‘Potential risk detection system of
hyperledger fabric smart contract based on static analysis,” in Proc. IEEE
Symp. Comput. Commun. (ISCC), Athens, Greece, Sep. 2021, pp. 1-7.
L. Olivieri, L. Negrini, V. Arceri, B. Chachar, P. Ferrara, and A. Cortesi,
“Detection of phantom reads in hyperledger fabric,” IEEE Access,
vol. 12, pp. 80687-80697, 2024, doi: 10.1109/ACCESS.2024.3410019.
K. Yamashita and J. Ry. (2020). Chaincode Analyzer. Accessed:
Feb. 2024. [Online]. Available: https://github.com/hyperledger-
labs/chaincode-analyzer

C. Siva. (2021). Revivecc. Accessed: Feb. 2024. [Online]. Available:
https://github.com/sivachokkapu/revive-cc

P. Li, S. Li, M. Ding, J. Yu, H. Zhang, X. Zhou, and J. Li, “A
vulnerability detection framework for hyperledger fabric smart contracts
based on dynamic and static analysis,” in Proc. 26th Int. Conf. Eval.
Assessment Softw. Eng., New York, NY, USA, 2022, pp. 366-374, doi:
10.1145/3530019.3531342.

R. Wilhelm, ““Principles of abstract interpretation: By patrick cousot MIT
Press, 2021, ISBN 9780262044905, pp. 1-819. Reviewed by Reinhard
Wilhelm,” Formal Aspects Comput., vol. 34, no. 2, pp. 1-3, Sep. 2022,
doi: 10.1145/3546953.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Comput. Surv.,
vol. 51, no. 3, pp. 1-39, May 2018, doi: 10.1145/3182657.

D. Lehmann and M. Pradel, “Finding the dwarf: Recovering
precise types from WebAssembly binaries,” in Proc. 43rd ACM
SIGPLAN Int. Conf. Program. Lang. Design Implement.. New
York, NY, USA, Jun. 2022, pp.410-425, doi: 10.1145/3519939.
3523449.

SmartPy. SmartPy Reference - Constants vs Expressions. Accessed:
Aug. 2024. [Online]. Available: https://smartpy.io/reference.html

VOLUME 12, 2024

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

WebAssembly. Webassembly Introduction. Accessed: Aug. 2024.

[Online]. Available: https://webassembly.github.io/spec/core/intro/
introduction.html
WebAssembly GitHub—Non determinism. Accessed: Aug. 2024.

[Online]. Available: https://github.com/WebAssembly/design/blob/main/
Nondeterminism.md

T. Min and W. Cai, “A security case study for blockchain games,” in Proc.
IEEE Games, Entertainment, Media Conf. (GEM), Jun. 2019, pp. 1-8,
doi: 10.1109/GEM.2019.8811555.

Python Software Foundation. Python3 Documentation—Objects.
Accessed: Aug. 2024. [Online]. Available: https://docs.python.org/3/
reference/datamodel.html#objects-values-and-types

WebAssembly. WebAssembly GitHub—Number Types. Accessed:
Aug. 2024. [Online]. Available: https://webassembly.github.io/spec/
core/syntax/types.html#number-types

Ethereum Foundation. EVM Documentation. Accessed:
Aug. 2024. [Online]. Available: https://ethereum.org/en/developers/
docs/evm/opcodes

L. Olivieri, L. Negrini, V. Arceri, T. Jensen, and F. Spoto, “Design and
implementation of static analyses for tezos smart contracts,” Distrib.
Ledger Technol., Jan. 2024, doi: 10.1145/3643567.

P. Ince, X. Luo, J. Yu, J. K. Liu, and X. Du, “MATH—Finding
and fixing exploits in algorand,” in Proc. IEEE 22nd Int. Conf.
Trust, Secur. Privacy Comput. Commun. (TrustCom), Nov. 2023,
pp. 1572-1579.

F. Josselin (2020). Tealer. Accessed: Aug. 2024. [Online]. Available:
https://github.com/crytic/tealer

Z. Sun, X. Luo, and Y. Zhang, “Panda: Security analysis of algorand
smart contracts,” in Proc. 32nd USENIX Secur. Symp., New York, NY,
USA, 2023, pp. 1-19.

Y. Huang, B. Jiang, and W. K. Chan, “EOSFuzzer: Fuzzing EOSIO
smart contracts for vulnerability detection,” in Proc. 12th Asia—Pacific
Symposiuma Internetware, New York, NY, USA, 2021, pp. 99-109, doi:
10.1145/3457913.3457920.

N. He, R. Zhang, H. Wang, L. Wu, X. Luo, Y. Guo, T. Yu,
and X. Jiang, “EOSAFE: Security analysis of EOSIO smart con-
tracts,” in Proc. 30th USENIX Secur. Symp. (USENIX Secur.),
Aug. 2021, pp. 1271-1288. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/he-ningyu

B. Jiang, Y. Chen, D. Wang, I. Ashraf, and W. K. Chan, “WANA:
Symbolic execution of wasm bytecode for extensible smart contract
vulnerability detection,” in Proc. IEEE 21st Int. Conf. Softw. Qual., Rel.
Secur. (QRS), Dec. 2021, pp. 926-937.

S. Smolka, J.-R. Giesen, P. Winkler, O. Draissi, L. Davi, G. Karame,
and K. Pohl, “Fuzz on the beach: Fuzzing solana smart con-
tracts,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
New York, NY, USA, 2023, pp. 1197-1211, doi: 10.1145/3576915.
3623178.

S. Cui, G. Zhao, Y. Gao, T. Tavu, and J. Huang, “VRust: Automated
vulnerability detection for solana smart contracts,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA, 2022,
pp. 639-652, doi: 10.1145/3548606.3560552.

J. Navas and A. Gurfinkel, ““Verification of solana programs,” in Proc.
Solana Certora Prover ‘Challenges Softw. Verification Symp.” (CSV),
Venice, Italy, May 2023, pp. 1-28. Accessed: Aug. 2024. [Online]. Avail-
able: https://jorgenavas.github.io/slides/Solana-slides-CSV-05-26-23.pdf
L. Olivieri, T. Jensen, L. Negrini, and F. Spoto, “MichelsonLiSA: A static
analyzer for tezos,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops Affiliated Events (PerCom Workshops), Mar. 2023, pp. 80-85,
doi: 10.1109/PerComWorkshops56833.2023.10150247.

G. Bau, A. Miné, V. Botbol, and M. Bouaziz, “Abstract interpretation of
Michelson smart-contracts,” in Proc. 11th ACM SIGPLAN Int. Workshop
State Art Program Anal., New York, NY, USA, 2022, pp. 36-43, doi:
10.1145/3520313.3534660.

B. Bernardo, R. Cauderlier, G. Claret, A. Jakobsson, B. Pesin, and
J. Tesson, “Making Tezos smart contracts more reliable with Coq,” in
Leveraging Applications of Formal Methods, Verification and Validation:
Applications, T. Margaria and B. Steffen, Eds. Cham, Switzerland:
Springer, 2020, pp. 60-72.

Y. Nishida, H. Saito, R. Chen, A. Kawata, J. Furuse, K. Suenaga, and
A. Igarashi, “Helmholtz: A verifier for tezos smart contracts based on
refinement types,” New Gener. Comput., vol. 40, no. 2, pp. 507-540,
Jul. 2022.

166867

http://dx.doi.org/10.1145/3520313.3534658
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.23
http://dx.doi.org/10.1007/s10009-024-00758-x
http://dx.doi.org/10.1109/IWBOSE.2018.8327567
http://dx.doi.org/10.1109/IWBOSE.2018.8327567
http://dx.doi.org/10.1109/ACCESS.2024.3410019
http://dx.doi.org/10.1145/3530019.3531342
http://dx.doi.org/10.1145/3546953
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3519939.3523449
http://dx.doi.org/10.1145/3519939.3523449
http://dx.doi.org/10.1109/GEM.2019.8811555
http://dx.doi.org/10.1145/3643567
http://dx.doi.org/10.1145/3457913.3457920
http://dx.doi.org/10.1145/3576915.3623178
http://dx.doi.org/10.1145/3576915.3623178
http://dx.doi.org/10.1145/3548606.3560552
http://dx.doi.org/10.1109/PerComWorkshops56833.2023.10150247
http://dx.doi.org/10.1145/3520313.3534660

IEEE Access

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

S. Kruglik, K. Nazirkhanova, and Y. Yanovich, “Challenges beyond
blockchain: Scaling, oracles and privacy preserving,” in Proc. XVI
Int. Symp. ‘Problems Redundancy Inf. Control Syst” (REDUNDANCY),
Oct. 2019, pp. 155-158.

L. Foschini, A. Gavagna, G. Martuscelli, and R. Montanari, “Hyperledger
fabric blockchain: Chaincode performance analysis,” in Proc. IEEE
Int. Conf. Commun. (ICC), Dublin, Ireland, Jun. 2020, pp. 1-6, doi:
10.1109/1CC40277.2020.9149080.

P. P. Ray, “An overview of WebAssembly for IoT: Background, tools,
State-of-the-art, challenges, and future directions,” Future Internet,
vol. 15, no. 8, p. 275, Aug. 2023.

A. J. Varela-Vaca and A. M. R. Quintero, “Smart contract languages: A
multivocal mapping study,” ACM Comput. Surv., vol. 54, no. 1, pp. 1-38,
2021, doi: 10.1145/3423166.

P. Fraga-Lamas, T. M. Ferndndez-Caramés, A. M. Rosado da Cruz, and S.
I. Lopes, “An overview of blockchain for industry 5.0: Towards human-
centric, sustainable and resilient applications,” IEEE Access, vol. 12,
pp. 116162-116201, 2024.

M. T. Alam, S. Chowdhury, R. Halder, and A. Maiti, ‘“Blockchain
domain-specific languages: Survey, classification, and comparison,”
in Proc. IEEE Int. Conf. Blockchain (Blockchain), December
Y. Xiang, Z. Wang, H. Wang, and V. Niemi, Eds. Melbourne,
VIC, Australia: IEEE Press, Dec. 2021, pp.499-504, doi:
10.1109/Blockchain53845.2021.00076.

R. M. Parizi, Amritraj, and A. Dehghantanha, ““Smart contract program-
ming languages on blockchains: An empirical evaluation of usability and
security,” in Blockchain—(ICBC), S. Chen, H. Wang, and L.-J. Zhang,
Eds. Cham, Switzerland: Springer, 2018, pp. 75-91, doi: 10.1007/978-
3-319-94478-4_6.

P. L. Seijas, S. Thompson, and D. McAdams, ““Scripting smart contracts
for distributed ledger technology,” in Financial Cryptography and Data
Security: FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers,
vol. 10323, M. Brenner et al., Eds. Springer, 2017, pp. 361-362, doi:
10.1007/978-3-319-70278-0.

W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, ““Smart contract development: Challenges and opportunities,”
IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084-2106, Oct. 2021, doi:
10.1109/TSE.2019.2942301. https://doi.org/10.1109/TSE.2019.2942301
H. Guo and X. Yu, “A survey on blockchain technology and its security,”
Blockchain: Res. Appl., vol. 3, no. 2, Jun. 2022, Art. no. 100067, doi:
10.1016/j.bcra.2022.100067.

H. T. M. Gamage, H. D. Weerasinghe, and N. G. J. Dias, “A survey on
blockchain technology concepts, applications, and issues,” Social Netw.
Comput. Sci., vol. 1, no. 2, p. 114, Mar. 2020, doi: 10.1007/342979-020-
00123-0.

D. Berdik, S. Otoum, N. Schmidt, D. Porter, and Y. Jararweh, “A
survey on blockchain for information systems management and security,”
Inf. Process. Manage., vol. 58, no. 1, Jan. 2021, Art. no. 102397, doi:
10.1016/5.ipm.2020.102397.

D. L. Fekete and A. Kiss, “A survey of ledger technology-based
databases,” Future Internet, vol. 13, no. 8, p. 197, Jul. 2021, doi:
10.3390/£i13080197.

LUCA OLIVIERI received the Ph.D. degree
in computer science from the University of
Verona, focusing on verifying smart contracts and
blockchain software. He was a Software Engineer
and a Research Scientist for five years in the
industrial field on static analysis based on abstract
interpretation, mainly for Java and C# programs.
After that, he joined the Software and System
Verification (SSV) Group, Ca’ Foscari University
of Venice, where he is currently an Assistant

Professor (non-tenure track) of computer science.

166868

VINCENZO ARCERI received the Ph.D. degree in
computer science from the University of Verona,
in May 2020. From September 2019 to September
2021, he was a Postdoctoral Researcher with
the Software and System Verification Research
Group, Ca’ Foscari University of Venice. He was
a UROP Student with Imperial College London,
in Summer 2016, under the supervision of Prof.
Sergio Maffeis. He is currently an Assistant
Professor (non-tenure track) with the Department
of Mathematical, Physical, and Computer Sciences, University of Parma.
His research interests include static program analysis, abstract interpretation,
string analysis and verification, blockchain software verification, and, more
generally, and formal methods for program security.

BADARUDDIN CHACHAR received the bache-
lor’s degree in computer science from COMSATS
University, Lahore, Pakistan, in 2013, on a Fully
Funded National Scholarship for Science and
Engineering by the Ministry of IT, Pakistan, and
the master’s degree in software engineering from
Sukkur IBA University, Pakistan, in 2018. He is
currently pursuing the Ph.D. degree in computer
science with the Ca’ Foscari University of Venice,
Venice, Italy. His Ph.D. project focuses on smart
contract vulnerability detection using static analysis under the supervision
of Agostino Cortesi and Pietro Ferrara.

LUCA NEGRINI received the bachelor’s and
master’s degrees from the University of Verona,
and the Ph.D. degree in computer science from
the Ca’ Foscari University of Venice, in January
2023, focusing on multi-language static analysis.
He has by five years of industrial experience in
the development and applications of static analysis
and abstract interpretation with the Julia static
analyzer. He then joined the Ca’ Foscari University
of Venice, as a Research Fellow, where he is
currently an Assistant Professor (non-tenure track).

FABIO TAGLIAFERRO received the degree in
computer science and engineering from the Uni-
versity of Verona, in 2020. Then, he conducted
research activities at the University of Verona, for
a few years after his graduation. He is currently a
Software Engineer with Equixly Srl, Italy.

VOLUME 12, 2024

http://dx.doi.org/10.1109/ICC40277.2020.9149080
http://dx.doi.org/10.1145/3423166
http://dx.doi.org/10.1109/Blockchain53845.2021.00076
http://dx.doi.org/10.1007/978-3-319-94478-4_6
http://dx.doi.org/10.1007/978-3-319-94478-4_6
http://dx.doi.org/10.1007/978-3-319-70278-0
http://dx.doi.org/10.1109/TSE.2019.2942301
http://dx.doi.org/10.1016/j.bcra.2022.100067
http://dx.doi.org/10.1007/s42979-020-00123-0
http://dx.doi.org/10.1007/s42979-020-00123-0
http://dx.doi.org/10.1016/j.ipm.2020.102397
http://dx.doi.org/10.3390/fi13080197

L. Olivieri et al.: GPLs for Blockchain Smart Contracts Development: A Comprehensive Study I E E EACCGSS

FAUSTO SPOTO is currently an Associate Pro-
fessor with the University of Verona, Italy, where
he studies programming languages and software
engineering. He has developed techniques for the
static analysis of Java and Java bytecode. More
recently, he studied the use of Java for writ-
ing smart contracts and developed the Hotmoka
blockchain. His current research interest includes
static analysis and construction of verified smart
contracts.

PIETRO FERRARA is an Expert of abstract
interpretation-based static analysis, focusing on
identifying security vulnerabilities and privacy
breaches in object-oriented programs. He is cur-
rently an Associate Professor with the Ca’ Foscari
University of Venice. Prior to academia, he gained
industry experience bridging scientific research
with software development and delivery. This
included roles, such as the Head of the Research
and Development, JuliaSoft Srl, and a Research

Staff Member with IBM Research.

AGOSTINO CORTESI received the Ph.D. degree
from the University of Padova, Padua, Italy. He is
currently a Full Professor of computer science with
the Ca’ Foscari University of Venice. His research
interests include the software engineering and
software verification areas, combining theoretical,
and applicative approaches. He contributed to
more than 200 articles in journals (including
ACM Transactions on Programming Languages
and Systems and IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING) and proceedings of international conferences (including ACM
POPL, ACM PLDI, and IEEE LICS). According to Scopus, his current
H-index is 23, with more than 1800 citations. He serves as the Co-Editor-in-
Chief for the book series “Services and Business Process Reengineering”
(Springer Nature).

Open Access funding provided by ‘Universita degli Studi di Parma’ within the CRUI CARE Agreement

VOLUME 12, 2024

166869

