
Automating ROS2 Security Policies Extraction through Static Analysis

Giacomo Zanatta1, Gianluca Caiazza1, Pietro Ferrara1, Luca Negrini1, Ruffin White2

Abstract— Cybersecurity in mission-critical robotic applica-
tions is a necessity to scale deployments securely. ROS2 builds
upon DDS-Security specs in ROS Client Library (RCL) to
implement its security features. Utilizing SROS2, developers
have access to a set of utilities to help set up security in a way
RCL can use. Through SROS2, security deployment is eased for
developers. However, while access control is handled by DDS
and consequently based on the SROS2-generated permission
artifacts, the necessary authorization policies are manually
generated by developers. This requires an entire system exercise
to be sampled via live extraction and, per each node, list all
the necessary Topics, Services, and Actions, which is a daunting
and laborious process. Developers first have to generate tests.
Then, they obtain a ’snapshot’ of the system for each test. Later,
these snapshots must be collected and grouped into a policy by a
minimum set of rules. All this procedure is quite error-prone.
This paper introduces LiSA4ROS2, a tool for automatically
extract the ROS2 computational graph via static analysis to
derive a minimal correct configuration for ROS2 security
policies. Our approach relies on the abstract interpretation
theory to statically overapproximate all possible executions to
extract a minimal and complete configuration per node. We
evaluate our approach with minimal examples covering all
the main communication patterns in ROS2 tutorials and all
publicly available real-world ROS2 Python systems extracted
from GitHub. The results of the minimal examples show that
LiSA4ROS2 precisely supports all the main communication
patterns. The extensive evaluation underlines that our prototype
implementation of the analysis in LiSA4ROS2 is already able
to precisely analyze 66% of existing repositories, automatically
producing detailed computational graphs and access policies.
All the results of the analysis, as well as a Docker artifact to
reproduce them, are publicly available.

I. INTRODUCTION

Nowadays, robotic systems, and in general, Cyber-
Physical Systems (CPS), are pervasive and ubiquitous. With
the spread of those devices outside of laboratories and
controlled environments, such as autonomous cars and med-
ical teleoperated robots, we have to carefully evaluate how
system misbehavior could compromise humans and environ-
mental safety [1]. Robotic frameworks were not designed
initially with security in mind. However, as they started to be
adopted into products and used in mission-critical programs,
more attention was drawn to security issues [2].

Robot Operating System (ROS) [3], and its successor
ROS2 [4] represent the de facto framework for robotic devel-
opment. In recent years, we have observed how the interest
in security in the ROS community has increased. From a
community survey in 2022 [5], we know that 73% of the

1Giacomo, Gianluca, Pietro, and Luca are with Ca’ Foscari University
of Venice, Italy giacomo.zanatta, gianluca.caiazza,
pietro.ferrara, luca.negrini @unive.it

2Ruffin with White Robotics rwhitema@ucsd.edu

survey participants considered investing more to protect their
robots from cyber threats. The same number of participants
indicated that their organizations were open to investing;
however, only 26% acknowledged having invested. There has
been some early work on securing ROS [6], [7], [8], which
are not active anymore due to the shift in security effort to
ROS2 with the Secure ROS2 project (SROS2) [9]. Similarly
to ROS2, other modern robotic and cyber-physical system
protocols, such as Eclipse Zenoh1, and Internet of Things
(IoT) solutions (e.g., Apple Homekit, Google Home, Matter
Alliance, etc.) leverage their complex distributed architec-
ture on loosely coupled graph representation. Through this
abstraction, we can significantly simplify the development
effort and enhance code portability through different versions
and technology solutions.

Currently, ROS2 builds upon Data Distribution Service
(DDS) Security (DDS-Security) 2 specs in ROS Client Li-
brary (RCL) for implementing its security features. Utilizing
SROS2, developers have access to a set of utilities to help
set up security in a way RCL can use. Through SROS2
utilities, security deployment is eased for developers who do
not have to manually manage Certificate Authorities (CAs),
Nodes’ identity artifacts, and governance files, providing
streamlined mechanisms as well to translate ROS2 ’security
terms’ in low-level DDS permissions. At the time of writing,
there is an active effort in the ROS community to sup-
port alternative middleware solutions to complement Secure
DDS3. The ROS2 core team has examined currently available
middleware alternatives and identified security as one of the
top requirements priority [10] with support to Encryption,
Authentication, and Access Control as “Must” - as intended
in RFC 2119 - to be included. SROS2 currently supports all
the properties mentioned above, but developers, to correctly
implement cybersecurity in their products, should follow
some necessary steps as proposed in the SROS2 DevSecOps
model [9]. The six-step methodology includes the following:
(A) Modeling, (B) Authentication, (C) Authorization, (D)
Generalization, (E) Deployment, and (F) Monitoring. On
the one hand, steps B to E are covered in SROS2 tools
by leveraging DDS. On the other hand, points A and F,
as part of the never-ending loop of continuous Monitoring
and Mitigation, require the developer to interact and audit
the system manually. Our work is focused on the Modeling
phase, where developers have to create a set of tests to
exercise the application to live-extract fully, per node, the

1https://zenoh.io/
2https://www.omg.org/spec/DDS-SECURITY
3https://discourse.ros.org/t/investigation-into-alternative-middleware-

solutions/32642



list of all the necessary Topics, Services, and Actions. We
argue that exhaustively exercising a system by tests is a
daunting and limited process (i.e., execution path). Each test
results in a snapshot of the system, which later has to be
merged with the other to build the Node’s security policy.
Merging is a complex process as it requires verifying that
the identified set is minimal to respect the Principle of Least
Privilege (PoLP), which limits access rights to only what
is strictly required and correct with the Node’s resources.
Devising effective access control policies can be challenging
and error-prone, especially when performed manually. In
this article, we enhance the current approach proposed in
the Modeling phase, introducing LiSA4ROS2 [11], a tool for
automatically extracting the security policy from the source
code via abstract interpretation. A sound overapproximation
(that is, considering all possible executions of the program)
of the ROS2 computational graph is extracted, and a correct
configuration for ROS2 security policies is provided. We
implemented our approach in the prototype LiSA4ROS2 as
an extension of the Library for Static Analysis (LiSA)4 [12],
[13]. Starting from a ROS2 Python application, LiSA4ROS2
produces the program’s computational graph and the XML
access policy specification. We tested our tool on two distinct
sets of applications. First, we analyzed all ROS2 tutorial
examples, explaining how different robotic nodes can com-
municate. In all these examples, LiSA4ROS2 produced exact
computational graphs and access policies. We then analyzed
all publicly available GitHub repositories that contain ROS2
Python programs. This extensive analysis, consisting of
almost 700 repositories and more than 5000 Python files,
shows that LiSA4ROS2 can precisely infer computational
graphs and access policies on 66% of the repositories. The
remaining 34% are not yet precisely analyzed because of
some limitations in the features supported by the analysis
(such as non-constant names of nodes and topics coming
from external configuration files). Those features might be
added to LiSA4ROS2 easily with some engineering work,
but since they do not represent an interesting scientific
contribution, we left them as future work. LiSA4ROS2 is
a fully automatic tool that can be easily integrated with
SROS2 and become part of the DevSecOps model pipeline
to increase usability and security. In addition, it can be
generalized to other ecosystems in robotics and CPS, where
the same graph-based architecture is applicable with support
to multiple languages. The corresponding artifacts, Docker
images, and results are available on the GitHub repositories:

• https://github.com/lisa-analyzer/lisa4ros2
• https://github.com/lisa-analyzer/lisa4ros2-fe

The rest of the paper is organized as follows. Section II
presents a motivating scenario. Section III introduces the
approach developed in LiSA4ROS2. Section IV presents
LiSA4ROS2 experimental evaluation. Section V examines
the related works. Finally, Section VI discusses future works,
and Section VII concludes.

4https://github.com/lisa-analyzer/lisa

II. MOTIVATING SCENARIO

Statically analyzing the source code enables the identi-
fication of entities whose presence in the network cannot
be (or is hard to) dynamically discover. For instance, the
existence of a name may hinge on the reception of a
particular message or an ad-hoc configuration, or it might be
activated exclusively in specific execution environments (e.g.,
exclusively in production). In these scenarios, a dynamic
analysis would reveal only a partial view of the commu-
nications, as it is contingent upon the timing, location, and
conditions under which the analysis is executed (i.e., whether
it occurs before or after a node receives the triggering
message leading to the instantiation of one or more entities).
Consider, for instance, the code snippet presented in Listing
1, extracted from the solar ros repository5. This code
orchestrates a conventional communication scheme among
various robotic nodes. Specifically, the code defines a class
named PolyDustService that extends a ROS Node.

1 class PolyDustService(Node):
2 def __init__(self):
3 super().__init__(’poly_dust_service’)
4 self.callback_group = MutuallyExclusiveCallbackGroup()
5 model_path = pkg_resources.resource_filename(’poly_dust’,
6 ’sm_unet4_03.hdf5’)
7 self.unet_model = Unet_Model(model_path)
8 self.srv = self.create_service(DeliverImg,
9 ’poly_dust_service’,

10 self.proccess_img,
11 callback_group=self.callback_group)
12 self.get_logger().info(’RUNING ...’)
13
14
15 def send_deliver_request(self, id):
16 deliver_client = self.create_client(DeliverImg ,
17 ’deliver_server’)
18 while not deliver_client.wait_for_service(timeout_sec=1.0):
19 self.get_logger().info(’deliver_server no disponible, Esperando ...’)
20 deliver_request = DeliverImg.Request()
21
22 deliver_request.photo_id = id
23
24 return deliver_client.call(deliver_request)
25
26 def recover_img_from_deliver_response(self, response):
27 img_bytes = np.array(response.photo, dtype=np.uint8)
28 return cv2.imdecode(img_bytes, _RGB)
29
30 def proccess_img(self, request, response):
31 response.photo = []
32 self.get_logger().info(f’Incoming request for poly dust server, photo

with id {request.photo_id} asking delivery’)
33 stored_photo = self.send_deliver_request(request.photo_id)
34 if stored_photo.photo == array(’B’):
35 self.get_logger().info(f’Photo with id {request.photo_id} not

available’)
36 return response
37 self.get_logger().info(f’Recovered photo with id {request.photo_id},

using model’)
38 image = self.recover_img_from_deliver_response(stored_photo)
39 image = cv2.resize(image, _image_size, interpolation = cv2.INTER_AREA)
40
41 dust_image = self.unet_model.unet_prediction(image)
42
43 self.get_logger().info(f’Resnet process eneded for photo with id {

request.photo_id}’)
44
45 reconstructed = dust_image.astype(np.uint8) * 100
46 reconstructed = array(’B’, reconstructed.tobytes())
47 response.photo = reconstructed
48 return response

Listing 1: Python source code from solar ros repository

Within its constructor, a service server is instantiated (line
8) to receive a photo ID and respond with the corresponding
photo. However, the retrieval of the photo involves an ad-
ditional step. Initially, the photo ID is forwarded to another
node through a service client that invokes a server named
deliver server (line 16). The instantiation of this server
occurs within the send deliver request function, in-
voked within the callback function of the service server (line

5https://github.com/cocisran/solar-ros



/poly dust service
Subscribers:

Publishers:
/parameter_events: rcl_interfaces/msg/ParameterEvent
/rosout: rcl_interfaces/msg/Log

Service Servers:
/poly_dust_service: solar_interfaces/srv/DeliverImg
/poly_dust_service/describe_parameters: rcl_interfaces/srv/

DescribeParameters
/poly_dust_service/get_parameter_types: rcl_interfaces/srv/GetParameterTypes
/poly_dust_service/get_parameters: rcl_interfaces/srv/GetParameters
/poly_dust_service/get_type_description: type_description_interfaces/srv/

GetTypeDescription
/poly_dust_service/list_parameters: rcl_interfaces/srv/ListParameters
/poly_dust_service/set_parameters: rcl_interfaces/srv/SetParameters
/poly_dust_service/set_parameters_atomically: rcl_interfaces/srv/

SetParametersAtomically
Service Clients:

Action Servers:

Action Clients:

(a) List info app started

/poly dust service
Subscribers:

Publishers:
/parameter_events: rcl_interfaces/msg/ParameterEvent
/rosout: rcl_interfaces/msg/Log

Service Servers:
/poly_dust_service: solar_interfaces/srv/DeliverImg
/poly_dust_service/describe_parameters: rcl_interfaces/srv/

DescribeParameters
/poly_dust_service/get_parameter_types: rcl_interfaces/srv/GetParameterTypes
/poly_dust_service/get_parameters: rcl_interfaces/srv/GetParameters
/poly_dust_service/get_type_description: type_description_interfaces/srv/

GetTypeDescription
/poly_dust_service/list_parameters: rcl_interfaces/srv/ListParameters
/poly_dust_service/set_parameters: rcl_interfaces/srv/SetParameters
/poly_dust_service/set_parameters_atomically: rcl_interfaces/srv/

SetParametersAtomically
Service Clients:
/deliver server: solar interfaces/srv/DeliverImg

Action Servers:

Action Clients:

(b) Output after call of the service

Fig. 1: ROS2 Output for command ’ros2 node info /poly dust service’.

33). This function ultimately returns the requested image
(line 48). The existence of the deliver server service
client is conditional upon the node serving a client to the
poly dust service.

When running the program and inspecting the node using
the command ros2 node info /poly dust service, the output
provides a list of clients and servers, as depicted in Fig. 1a.
The service client is absent since it has not yet been executed.
Conversely, when requesting the poly dust service
server (e.g., by executing the command ’ros2 service call
/poly dust service solar interfaces/srv/DeliverImg ”{}”’ in
a terminal) and subsequently rechecking the node’s informa-
tion, the client is present. This occurs because the callback
has been executed at least once, as illustrated in Fig. 1b.

If the policy file is generated before the
poly dust service receives at least one message
using the tool provided by SROS2 (ros2 security create
policy policy.xml), the resulting policy file, as shown in
Listing 2, is incomplete.
<policy version="0.2.0">

<enclaves>
<enclave path="/">
<profiles>
<profile node="poly_dust_service" ns="/">
<services reply="ALLOW">
<service>poly_dust_service</service>
<service>˜/describe_parameters</service>
<service>˜/get_parameter_types</service>
<service>˜/get_parameters</service>
<service>˜/get_type_description</service>
<service>˜/list_parameters</service>
<service>˜/set_parameters</service>
<service>˜/set_parameters_atomically</service>

</services>
<topics publish="ALLOW">
<topic>parameter_events</topic>
<topic>rosout</topic>

</topics>
</profile>

</profiles>
</enclave>

</enclaves>
</policy>

Listing 2: Policy file generated by SROS2

This nearly-minimal example highlights an inherent lim-
itation of dynamic analyses: the necessity to execute the
code across all conceivable environments, configurations,
and inputs. However, practical constraints dictate that only
a fraction of these scenarios can be explored within a rea-
sonable time-frame. In contrast, a sound static analysis can

consider all potential executions and identify every conceiv-
able communication. Specifically, LiSA4ROS2 traces (i) the
recorded callback at line 11, (ii) the asynchronous execution
of the process img method facilitated by this callback,
and (iii) the subsequent execution of the service at line 33.
This capability stems from LiSA4ROS2’s semantic analysis,
which incorporates the semantics of Python statements and
the ROS2 library. The graph illustrated in Fig. 2 and the
policy file listed in Listing 3 document the information
inferred by LiSA4ROS2.

/poly_dust_service /deliver_server

/poly_dust_service

rr/poly_dust_serviceReply rq/deliver_serverRequestrq/poly_dust_serviceRequest rr/deliver_serverReply

Fig. 2: LiSA4ROS2 Graph representation of the
poly dust service node.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<policy version="0.2.0">
<enclaves>
<enclave path="/poly_dust_service">
<profiles>
<profile ns="/" node="poly_dust_service">
<topics publish="ALLOW">
<topic>/parameter_events</topic>
<topic>/rosout</topic>

</topics>
<services reply="ALLOW">
<service>/poly_dust_service/describe_parameters</service>
<service>/poly_dust_service/get_parameter_types</service>
<service>/poly_dust_service/set_parameters</service>
<service>/poly_dust_service/get_parameters</service>
<service>/poly_dust_service/get_type_description</service>
<service>/poly_dust_service/set_parameters_atomically</service>
<service>/poly_dust_service/list_parameters</service>
<service>/poly_dust_service</service>

</services>
<services request="ALLOW">
<service>/deliver server</service>

</services>
</profile>

</profiles>
</enclave>

</enclaves>
</policy>

Listing 3: Policy file generated by LiSA4ROS2

Nevertheless, a static approach to policy generation is not
inherently foolproof. Specifically, if a name is not directly
defined in the source code (e.g., sourced from a command
line argument), or its constant value cannot be semantically



identified (i.e., statically propagated to the method call), the
analysis might fail during the generation phase.

For instance, in the code snippet in Listing 4, the name of
the publisher remains unidentified since it originates from a
node parameter that may be externally set or from a launch
file not currently supported by LiSA4ROS2.

topic_name = node.get_parameter(’topic_name’).value

publisher = node.create_publisher(JointTrajectory,
topic_name, 10)

Listing 4: ROS2 code corner case example

Additional challenges arise when a node’s communication
entities are defined across multiple files, invoking auxiliary
functions in another Python module. Currently, LiSA4ROS2
only analyzes one file per node. The file must have an
entry point such that LiSA4ROS2 can comprehend the code’s
execution order to extract ROS2 entity definitions accurately.

III. APPROACH

Figure 3 reports the architecture of our approach. The
core of our analysis relies on the Library for Static Analysis
(LiSA), an analysis engine that works on a generic and
extensible control flow graph representation of the program
to analyze. LiSA relies on the abstract interpretation theory
[14], [15] to implement a sound static analysis, that is, an
analysis that overapproximates all possible executions of a
program without executing it.

Python 
frontend

Control Flow 
Graphs

Abstract Fixpoint 
Semantics Engine

Statement 
semantics

String 
constant 

propagation

CFG 
fixpoint

Program 
point-based 

heap 
domain

Policy 
extractor

ROS network

LiSA4ROS2

Fig. 3: LiSA4ROS2 Architecture

Our approach exploits some standard (and already imple-
mented in LiSA) domains to approximate common infor-
mation about the program. In particular, a String constant
propagation domain is adopted to track constant string values
[16]. Those constant values are commonly used to name the
resources involved in the communication between robotic
nodes. In addition, a field-sensitive program point-based heap
domain [17] allows us to retrieve the internal representation
of the node to track, where entities are defined and instanti-
ated in the code. Thanks to these standard domains, which
are not a contribution of this work, we can reconstruct the
intercommunication of nodes. Statement semantics applies
these two domains when approximating the effects of a
single program statement (e.g., an assignment). Statement
semantics is the basic block that allows abstract fixpoint
semantics to overapproximate all the possible executions of
a program on a control flow graph.

Besides the LiSA library’s core, LiSA4ROS2 encompasses
a Python front-end called PyLiSA. This front-end parses
Python source code files and produces a control flow graph
for each method. However, ROS2 Python code heavily relies
upon the Python ROS library (i.e., rclpy). When approxi-
mating the library behaviors, practical experience shows that
there is a need for manual annotation since (i) the library
implements a complex logic that is hard to approximate
automatically, and (ii) the code of the library is usually
highly optimized. Therefore, manual annotation is required
to obtain a precise analysis. For this reason, we adopted the
domain-specific language SARL [18], extending it with some
ROS2-specific components. In this way, we defined a sound
approximation of the library runtime behaviors by manually
specifying the effects of library calls on abstract analysis
states.

The fact that some entities are reactive is a challenge to
the analysis. This means that they execute an action (that
is, a piece of code) only when some specific events occur
(e.g., the ring of a timer or the reception of a message). This
action is programmatically defined as a callback function.
LiSA4ROS2 simulates the execution of callback functions
to find if there are definitions of other network entities
within them. This methodology permits the identification of
various entities that are not always executed in the runtime
graph. At the end of the analysis, LiSA produces an abstract
entry and exit state for each statement in the program. This
state overapproximates the execution state before and after
a given statement. LiSA4ROS2 then processes this state to
detect if a statement pushes something related to ROS in the
analysis state and, in this case, stores such information in a
ROS object that models a ROS network. Those ROS objects
are composed of Entities (subscribers, publishers, services
servers, service clients, action servers, action clients), Entity
Containers (nodes), and Network Channels (topics, services,
actions). An Entity has an associated Network Channel
(identified by a name) and a message type. Since each node
of a ROS2 application could live in a different machine,
LiSA4ROS2 analyzes every program that composes the
ROS2 application modularly, sharing only the ROS network
object to obtain a representation of the connection between
nodes.

Finally, by exploiting this information, LiSA4ROS2 ex-
tracts the ROS computational graph. Such a graph repre-
sents (i) the robotic nodes in the network (green vertexes),
(ii) the topics used by the nodes to communicate (yellow
vertexes), (iii) to what topics nodes publish (edges going
from robotic nodes to topics), and (iv) what topics are
listened to by nodes (edges going from topics to nodes).
During the extraction phase, we also generate the inter-
nal topics that Services and Actions use. For example, a
Service Server named service server has an associ-
ated Publisher on the topic service serverReply and
a Subscription on the topic service serverRequest.
Services and Actions are identified, respectively, by cyan
and violet rectangles. To generate the policy file, we con-
vert each node of the ROS Computational Graph into an



/minimal_subscriber/minimal_publisher rt/topic

Fig. 4: Computational Graph of the minimal publisher/sub-
scriber ROS2 tutorial example.

XML file. In addition, LiSA4ROS2 generates an HTML
report per project that shows the computational graph, the
number of entities extracted, and, for every node, a list
of its network entities. A glimpse of such report, specific
for the minimal subscriber of the example seen in
Fig. 4, is shown in Fig. 5: from that table, we can know
that the minimal subscriber has three system pub-
lishers, one system subscription, and one user-defined one.
For the latter, we see that the callback function is named
listener callback, and it is a field of the self object
(in that case, the node).

Motivating example

Consider again the motivating scenario introduced
in Section II. At the end of LiSA analysis, among
other information, the string constant propagation
engine discovers that (i) the name of the robotic
node passed to the constructor of the Node class at
lines 4 and 8 of Listing 1 is poly dust service
(reflected on the name reported on the green node
of Fig. 2 and to the poly dust serviceReply
and poly dust serviceRequest yellow nodes),
and (ii) the server used to deliver messages
is deliver server as specified at line 17
(leading to the deliver serverReply and
deliver serverRequest nodes). In addition, the
program point-based heap domain enables LiSA4ROS2
to infer that (i) poly dust service receives request
messages from and returns reply messages to the service
created at line 8 (leading to the two edges on the left of
Figure 2), and (ii) it sends request messages to and receives
reply messages back from the service created at line 17
(leading instead to the two edges on the right).

IV. EVALUATION

To assess the effectiveness of LiSA4ROS2, we analyzed
and inspected the results on two main families of ROS2
applications: (i) some minimal examples taken from the
ROS2 official tutorials, and (ii) publicly available GitHub

repositories containing ROS2 Python applications. Table I
presents various metrics related to a few chosen examples
of both families. All the examples mentioned above and
the complete analysis results are available at https://lisa-
analyzer.github.io/lisa4ros2-fe. In addition, a Dockerized ver-
sion of our tool is contained in the main repository. This can
help reproduce the results reported in this section and run our
analysis on other applications. In addition, upon successfully
executing the analysis, as exemplified in Figure 4, the
tool generates an SVG file portraying the topology of the
analyzed system for visual inspection. In this representation,
a green oval signifies a node, while a trapezoid represents
a resource involved in communication. The visualization
employs yellow rectangles for topics and light blue and violet
rectangles for services and actions, respectively. The edges
in the diagram depict the flow of messages. An edge from a
node to a resource means the node acts as a publisher in a
topic or initiates communication (e.g., serving as a services
server or action client). Conversely, an edge from a resource
to a node indicates that the node functions as a subscriber,
service server, or action server. The analysis also provides
an XML file per node representing an SROS2 policy for that
node. This file defines access control policy rules that say
what resources a node is authorized to use. Considering the
minimal publisher node of the previously mentioned
example, the analysis generates the policy file listed in
Listing 5.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<policy version="0.2.0">
<enclaves>
<enclave path="/minimal_publisher">
<profiles>
<profile ns="/" node="minimal_publisher">
<topics publish="ALLOW">
<topic>/topic</topic>
<topic>/parameter_events</topic>
<topic>/rosout</topic>

</topics>
<services reply="ALLOW">
<service>/minimal_publisher/get_parameter_types</service>
<service>/minimal_publisher/set_parameters_atomically</service>
<service>/minimal_publisher/set_parameters</service>
<service>/minimal_publisher/describe_parameters</service>
<service>/minimal_publisher/list_parameters</service>
<service>/minimal_publisher/get_type_description</service>
<service>/minimal_publisher/get_parameters</service>

</services>
</profile>

</profiles>
</enclave>

</enclaves>
</policy>

Listing 5: Policy file for minimal publisher node.

A. Minimal examples
Firstly, we applied our tool to conduct an in-depth analysis

of the rclpy examples package within ROS2, accessible at

Fig. 5: A glimpse of the HTML result for the minimal publisher node



ROS2 example repo6. Through these examples, we aimed to
showcase the tool’s capabilities in handling minimal setups
encompassing the most common code styles of invoking the
client library API, including both local and class member
functions for topic, service, and action functionality. The
first four rows of Table I report metrics of some of those
examples. These examples were selected since they are
part of the official ROS2 documentation7. In addition, we
included the oldschool version of the minimal publisher/-
subscriber example just to show that our analysis can also
handle different types (sometimes legacy) of node creation.
We manually inspected the analyses’ results on all these
examples. The graphs and policies produced by LiSA4ROS2
reflected what was described and provided in the ROS2
tutorials. Therefore, we conclude that LiSA4ROS2 supports
all the main types of communication of ROS2 applications,
i.e., topics, services, and actions.

B. GitHub repositories

In November 2023, we downloaded a set of publicly
available Python ROS2 applications from GitHub reposi-
tories. To select such applications, we downloaded a set
of GitHub repositories that contain Python ROS2 applica-
tions (i.e., at least one Python file that imports the rclpy
library). This comprehensive collection included a total of
682 repositories8. Within this dataset, we systematically
extracted all Python files (launch file excluded) containing
the definitions of super.init, create node, or Node
statements, resulting in the extraction of 5936 files. Sub-
sequently, these files were processed through our Python
front-end, with 5552 files (93.53%) successfully passing
the analysis and 384 files (6.47%) encountering parsing
errors — details of which are available in the repository.
Further investigation involved subjecting the passing files

6https://github.com/ros2/examples
7https://docs.ros.org/en/rolling/Tutorials/Beginner-Client-Libraries.html
8The dataset is available from: https://doi.org/10.5281/zenodo.10817418

to our control flow graph module, resulting in 5141 files
(92.6%) being accurately processed, while 411 files (7.4%)
encountered errors not being able to reach a fix-point in the
execution. Out of the files processed, we determined that
3406 (66%) can automatically determine all the necessary
information directly from the code9; 1735 (34%) instead are
cases where the analysis failed to compute precise names
(e.g., those might depend on configuration files that are
currently not yet supported by LiSA4ROS2), prompting
additional scrutiny and documentation10. The last thirteen
rows of Table I report metrics of some selected examples.
Those Python ROS2 applications range from a few hundred
to several thousand lines of code and from less than a dozen
to several hundreds of topics, services, publishers, and sub-
scribers. The selection process was guided by considerations
such as the number of elements, their interconnections, and
the lines of code. Overall, they represent a set of realistic
Python ROS2 applications with a relatively complex com-
putational graph. LiSA4ROS2 precisely analyzed all these
examples. For instance, fruit collectors encompasses
two nodes, six topics (three of which are system-related),
fifteen services (with fourteen designated as system services),
zero actions, and eight publishers across six systems. This
comprehensive overview provides a detailed insight into the
structural components and connectivity within the example
systems. A notable example is the virtuoso repository11:
our tool extracted 52 nodes, producing a highly connected
graph. This is the biggest graph we obtained in our analysis:
without considering systems entities, LiSA found 95 topics
(for which we have 132 publishers and 83 subscriptions), 14
services (with 7 service servers and 11 service clients), and
1 action with 1 action client. Given the complexity of this

9In all these cases, the string constant propagation analysis computed
precise results for node and topic names. Therefore, we are sure that the
computed results are precise.

10The collection of results from the extracted GitHub repositories is
available here: https://doi.org/10.5281/zenodo.10818685

11https://github.com/gt-marine-robotics-group/Virtuoso.git

TABLE I: Metrics of selected examples.

PROJECT LOC N T S A PUB SUB SS SC AS AC
pubsub minimal 44 2 4 (3) 14 (14) 0 7 (6) 3 (2) 14 (14) 0 0 0

pubsub minimal oldschool 38 2 4 (3) 14 (14) 0 7 (6) 3 (2) 14 (14) 0 0 0
services minimal 41 2 3 (3) 15 (14) 0 6 (6) 2 (2) 15 (14) 1 0 0
actions minimal 101 2 3 (3) 14 (14) 1 6 (6) 2 (2) 14 (14) 0 1 1

mechaship 849 5 8 (3) 38 (35) 0 18 (15) 13 (5) 35 (35) 3 0 0
solar-ros 243 6 4 (3) 44 (42) 0 19 (18) 7 (6) 44 (42) 3 0 0

ROS-LLM 302 4 9 (3) 30 (28) 0 19 (12) 6 (4) 30 (28) 1 0 0
Catch2023 hichewns 1000 8 30 (3) 56 (56) 0 52 (24) 34 (8) 56 (56) 0 0 0

fruit collectors 220 2 6 (3) 15 (14) 0 8 (6) 5 (2) 15 (14) 1 0 0
spatial-topology-teleoperation 166 2 10 (3) 14 (14) 0 11 (6) 5 (2) 14 (14) 0 0 0

ProjectMarch 511 5 13 (3) 37 (35) 1 25 (15) 9 (5) 38 (35) 0 0 1
5g drone ROS2 882 6 12 (3) 53 (42) 0 20 (18) 15 (6) 45 (42) 11 0 0

Virtuoso 3840 52 98 (3) 378 (364) 1 288 (156) 135 (52) 371 (364) 11 0 1
eml4842 gps nav 543 7 12 (3) 50 (49) 0 28 (21) 15 (7) 50 (49) 2 0 0

MARV-ROS 1036 7 51 (3) 49 (49) 0 59 (21) 42 (7) 49 (49) 0 0 0
module89 1947 15 28 (3) 113 (105) 0 71 (45) 33 (15) 111 (105) 7 0 0

zumopi telemetry system 1451 5 22 (3) 35 (35) 0 35 (15) 34 (5) 35 (35) 0 0 0
Lines Of Code (LOC), Numbers of Nodes (N), Topics (T), Services (S), Actions (A), Publishers (PUB), Subscribers (SUB), Service Servers (SS),

Service Clients (SC), Action Servers (AS), Action Clients (AC). The value inside the parentheses represents system entities.



application, exposing all these communications exhaustively
by runtime execution would have been infeasible.

V. RELATED WORK

To the best of our knowledge, no tools are currently avail-
able to fulfill the specific task we intend to undertake with
LiSA4ROS2. In the literature, analogous works can be found,
albeit within distinct domains and applications. For example,
the authors of [19] utilized static analysis for the automated
extraction of database interactions in Web applications. Like
LiSA, they employed static analysis to construct a Control
Flow Graph (CFG), albeit in a more condensed form called
an Interaction Flow Graph (IFG). Our approach stands out
as more potent when compared to their method, primarily
because of the restrictions they impose on their analysis,
confined solely to database interactions. Instead, LiSA4ROS2
tracks communications through the publish-subscribe pat-
tern. In contrast, our objective aligns more closely with
endeavors such as [20], where the authors employed stat-
ically extracted authorization graphs in Web applications’
interactions to enforce Role-Based Access Control (RBAC)
on resources. They subsequently utilized their model to
identify potential vulnerabilities, validate existing policies,
undertake policy re-documentation, execute role mining, and
simplify authorization facts. Similarly, we aim to achieve
comparable results within the complexity of a multi-tiered
setup, characteristic of the robotic field, where multiple nodes
must access resources through publish-subscribe mechanisms
that span multiple nodes and domains. Some previous work
has already applied static analysis in the context of ROS,
although existing approaches taken previously differ from
our specific objectives. In the first iteration of ROS, notable
instances include HAROS [21] and the associated analysis
within the framework [22]. It is essential to note that the
mentioned framework does not extend its support to ROS2,
and indications suggest that such support is not anticipated12.
Regarding ROS2, the authors of [23] focused on formally
verifying the DDS component in ROS2. They provide an
abstraction and a formalization of DDS in ROS2 based
on probabilistic timed automata. Their goal was to verify
properties such as security (i.e., no deadlock), liveness (i.e., a
node can reach the send wait), and priority (i.e., high priority
node has a higher priority of sending data) were extracted
for formal verification. While insightful regarding property
verification, our work diverges from the specific context
of our intended research. Other approaches focused on the
Runtime Verification (RV) of the system. Via RV, developers
can verify the behaviors of safety-critical systems that are too
complex to verify formally. However, monitors are complex
to program, and errors would threaten the whole system. The
authors in [24] provide an overview of a formal approach to
generating runtime monitors for ROS2 applications via the
Formal Requirement Elicitation Tool (FRET) and the Ogma
integration tool. However, their focus is on integrating ROS2
packages into larger systems, minimizing the effort that is out

12https://github.com/git-afsantos/haros/issues/117

of the scope of our objectives. A noteworthy examination
involves other RV efforts. Unfortunately, they exclusively
support ROS and lack compatibility with ROS2. Examples
include (i) ROSRV [25], which allows the definition of safety
and security properties in a formal specification language,
ensured by automatically generated monitors, (ii) ROSMon-
itoring [26], supporting multiple ROS distributions and being
agnostic to the specification formalism, (iii) and DeRoS
[27], a domain-specific language and monitoring system
designed explicitly for ROS. In our pursuit of enumerating
ROS2 Computational Graph resources, we focus on refining
the Modeling phase outlined in the SROS2 paper [9]. As
mentioned, to delve into the graph’s introspection, developers
can employ live extraction through the ROS2 API command
line tool or leverage scapy for the dissection and decoding
of DDS network packets [28]. We can also capitalize on
the enhancements introduced in [29], extending the capa-
bilities of ros2 tracing for real-time tracing of ROS2.
Despite its original focus on uncovering causal links between
input/output messages and indirect causal links, integrating
this tool into the modeling analysis proves advantageous as
a supplementary component. However, all these approaches,
albeit valuable, can explore only a limited amount of all
possible execution paths in the code. Constrained by the
current test execution (e.g., input values and configuration
environment), there exists a risk of leaving certain parts
uncovered, potentially leading to misconfigurations in the
access policy. Consequently, hidden resources and the po-
tential insertion of malicious elements may persist within the
system due to overly relaxed rules [30]. OSRF has developed
a tool for translating the Node Interface Definition Language
(NoDL) description of a ROS system into SROS2 policy
[31]. However, as of the current writing, the development
in that regard has encountered challenges stemming from
various issues with the definition [32] and adoption of NoDL
in ROS2, leading to its suspension.

VI. FUTURE WORK

As mentioned, current feature limitations hinder the com-
plete analysis of ROS packages that either leverage external
configuration files to remap ROS namespaces upon launch
dynamically, split node API instantiation across multiple
source files or use ROS client libraries other than rclpy. To
further community adoption and impact of LiSA4ROS2, we
would like to extend support for more diverse node source
layouts, as well as transitive analysis of launch files, includ-
ing configurations written via interpreted scripts (Python)
or more static markup languages (XML, YAML). We also
intend to add support for C++ sources using rclcpp via
the development of an LLVM front-end for LiSA. Finally,
we would like to apply Information Flow Analysis to auto-
detect the declassification of private messages.

VII. CONCLUSION

In this paper, we introduced LiSA4ROS2, a novel tool
designed to automate ROS2 computational graph extraction
through static analysis. We investigated the application of



formal methods and elucidated how static analysis enables
us to tackle the challenge of potential errors stemming from
improper policy configurations, as well as the complexities
associated with manually crafting a precise policy. Further-
more, we presented an empirical assessment of the tool’s
efficacy, showcasing its ability to facilitate both minimal
setups and intricate deployments using real-world code.
This evaluation underscores the tool’s practical utility and
its potential to streamline security policy establishment in
ROS2 environments. Lastly, we provided insights into the
limitations inherent in the current version of our tool and
outlined avenues for future research and development that we
intend to pursue. These reflections contribute to a compre-
hensive understanding of the tool’s capabilities and highlight
opportunities for enhancement in subsequent iterations.

ACKNOWLEDGMENT
Work partially supported by SERICS (PE00000014 - CUP

H73C2200089001) under the NRRP MUR program funded
by the EU - NGEU, and by iNEST- Interconnected NordEst
Innovation Ecosystem funded by PNRR (Mission 4.2, In-
vestment 49 1.5) NextGeneration EU (ECS 00000043 - CUP
H43C22000540006).

REFERENCES

[1] Laura Alzola Kirschgens, Irati Zamalloa Ugarte, Endika Gil-Uriarte,
Aday Muñiz Rosas, and Victor Mayoral Vilches. Robot hazards: from
safety to security. CoRR, abs/1806.06681, 2018.

[2] Vı́ctor Mayoral-Vilches. Robot cybersecurity, a review. International
Journal of Cyber Forensics and Advanced Threat Investigations, 0(0),
2022.

[3] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3.2, page 5. Kobe, Japan, 2009.

[4] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and
William Woodall. Robot operating system 2: Design, architecture,
and uses in the wild. Science Robotics, 7(66):eabm6074, 2022.

[5] Vı́ctor Mayoral-Vilches. Robot cybersecurity, a review. International
Journal of Cyber Forensics and Advanced Threat Investigations, 2022.

[6] Bernhard Dieber, Severin Kacianka, Stefan Rass, and Peter Schart-
ner. Application-level security for ros-based applications. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4477–4482. IEEE, 2016.

[7] Ruffin White, Dr Henrik I Christensen, and Dr Morgan Quigley. Sros:
Securing ros over the wire, in the graph, and through the kernel. arXiv
preprint arXiv:1611.07060, 2016.

[8] Gianluca Caiazza, Ruffin White, and Agostino Cortesi. Enhancing
Security in ROS, pages 3–15. Springer Singapore, Singapore, 2019.

[9] Victor Mayoral-Vilches, Ruffin White, Gianluca Caiazza, and Mikael
Arguedas. Sros2: Usable cyber security tools for ros 2. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 11253–11259, 2022.

[10] ROS2 core team. 2023-09 ros 2 rmw alternate.
https://discourse.ros.org/t/ros-2-alternative-middleware-report/33771.

[11] Giacomo Zanatta, Pietro Ferrara, Gianluca Caiazza, Teodors
Lisovenko, Luca Negrini, and Ruffin White. Sound static analysis
for microservices: Utopia? a preliminary experience with lisa. In
Proceedings of the 26th ACM International Workshop on Formal
Techniques for Java-like Programs. ACM, 2024.

[12] Luca Negrini, Pietro Ferrara, Vincenzo Arceri, and Agostino Cortesi.
LiSA: A Generic Framework for Multilanguage Static Analysis, pages
19–42. Springer Nature Singapore, Singapore, 2023.

[13] Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi.
Static analysis for dummies: experiencing lisa. In Proceedings of the
10th ACM SIGPLAN International Workshop on the State Of the Art
in Program Analysis, SOAP 2021, page 1–6, New York, NY, USA,
2021. Association for Computing Machinery.

[14] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approx-
imation of Fixpoints. In 4th ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977.

[15] P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In 6th Annual ACM Symposium on Principles of
Programming Languages, San Antonio, Texas, USA, January 1979,
pages 269–282. ACM Press, 1979.

[16] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. A suite of
abstract domains for static analysis of string values. Softw. Pract.
Exp., 45(2):245–287, 2015.

[17] L. O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994.

[18] Pietro Ferrara and Luca Negrini. SARL: OO framework specification
for static analysis. In 12th International Conference on Verified
Software: Theories, Tools, and Experiments - VSTTE 2020,, volume
12549 of Lecture Notes in Computer Science, pages 3–20. Springer,
2020.

[19] Minh Ngoc Ngo and Hee Beng Kuan Tan. Applying static analysis
for automated extraction of database interactions in web applications.
Information and Software Technology, 50(3):160–175, 2008.

[20] B. J. Berger, R. Nguempnang, K. Sohr, and R. Koschke. Static
extraction of enforced authorization policies seeauthz. In 2020 IEEE
20th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 187–197, Los Alamitos, CA, USA, oct
2020. IEEE Computer Society.

[21] André Santos, Alcino Cunha, and Nuno Macedo. The high-assurance
ros framework. In 2021 IEEE/ACM 3rd International Workshop on
Robotics Software Engineering (RoSE), pages 37–40, 2021.

[22] André Santos, Alcino Cunha, Nuno Macedo, and Cláudio Lourenço.
A framework for quality assessment of ros repositories. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4491–4496, 2016.

[23] Yanan Liu, Yong Guan, Xiaojuan Li, Rui Wang, and Jie Zhang. Formal
analysis and verification of dds in ros2. In 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System
Design (MEMOCODE), pages 1–5, 2018.

[24] Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alexander Will, and
Patrick J Martin. Monitoring ros2: from requirements to autonomous
robots. arXiv preprint arXiv:2209.14030, 2022.

[25] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou
Luo, Aravind Sundaresan, and Grigore Rosu. Rosrv: Runtime verifica-
tion for robots. In Runtime Verification: 5th International Conference,
RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings
5, pages 247–254. Springer, 2014.

[26] Angelo Ferrando, Rafael C Cardoso, Michael Fisher, Davide Ancona,
Luca Franceschini, and Viviana Mascardi. Rosmonitoring: a runtime
verification framework for ros. In Towards Autonomous Robotic
Systems: 21st Annual Conference, TAROS 2020, Nottingham, UK,
September 16, 2020, Proceedings 21, pages 387–399. Springer, 2020.

[27] Sorin Adam, Morten Larsen, Kjeld Jensen, and Ulrik Pagh Schultz.
Towards rule-based dynamic safety monitoring for mobile robots. In
Simulation, Modeling, and Programming for Autonomous Robots: 4th
International Conference, SIMPAR 2014, Bergamo, Italy, October 20-
23, 2014. Proceedings 4, pages 207–218. Springer, 2014.

[28] R Rohith, Minal Moharir, G Shobha, et al. Scapy-a powerful interac-
tive packet manipulation program. In 2018 international conference
on networking, embedded and wireless systems (ICNEWS), pages 1–5.
IEEE, 2018.

[29] Christophe Bédard, Pierre-Yves Lajoie, Giovanni Beltrame, and
Michel Dagenais. Message flow analysis with complex causal links
for distributed ros 2 systems. Robotics and Autonomous Systems,
161:104361, 2023.

[30] Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang
Liu. On the (in)security of secure ros2. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 739–753, New York, NY, USA, 2022. Association for
Computing Machinery.

[31] OSRF. https://github.com/osrf/nodl to policy, Accessed on 2024-02-
28.

[32] ROS2 Design. Design node interface definition language (idl).
https://github.com/ros2/design/pull/266, Accessed on 2024-02-28.


