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Abstract—Hyperledger Fabric (HF) is currently the one that
made blockchain and smart contracts accessible to industries,
providing highly customizable solutions for many enterprise use
cases. Despite this, programmers are often discouraged from
implementing smart contracts due to the high learning curve
and security risks of naive smart contract implementations. At
the same time, the advent of Large Language Models (LLMs) for
code generation led to new possible scenarios such as creating
new smart contract applications starting from natural language,
allowing to reduce costs and development times. This paper
investigates the maturity of LLMs for the code generation of HF
smart contracts. In particular, we (i) generate smart contracts
written in Go for HF starting from natural language descriptions,
(ii) select state-of-the-art static analyzers of Go program, and
(iii) perform a quality and security assessment of the generated
smart contracts. Our empirical results show current LLMs do
not produce high-quality smart contracts, and a relevant effort
to debug and patch contracts containing bugs and possible
vulnerabilities.

Index Terms—LLM, Code Generation, Blockchain, Smart
Contract, Chaincode, Static Analysis, Program Verification

I. INTRODUCTION

Over the last decade, the blockchain and smart contracts
attracted the attention from industries, governments, and
academia [1]-[5]. Thanks to these technologies, it is possible
to collect information in a tamper-proof way and without the
need for third-party intermediaries allowing to reduce costs
and make safer operations (e.g., asset transfer [6], agreement
stipulation [7], ...). However, while having an anti-tamper
system such as the blockchain is a great security feature, it
can also make it hard to patch vulnerabilities, unexpected
behaviors, and wrong data after the deployment and execution
of buggy smart contracts, leading in the worst cases to huge
economic losses [8]. For these reasons, smart contract imple-
mentations require rigorous development to ensure a bug-free
deployment in the blockchain.

Fueled by substantial success in natural language appli-
cations, Large Language Models (LLMs) have demonstrated
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unparalleled proficiency in diverse domains [9]-[11]. One no-
table application is their integration into code assistants, where
they are extensively trained on expansive open-source code
repositories to generate functionally correct programs [12],
[13]. These models generate functionally correct programs
based on user-provided prompts [14], [15]. This innovative
utilization forms the foundation of numerous commercial code
completion engines, reshaping the programming landscape
and enhancing developer productivity [16]. For example, the
Codex model [15] is the driving force behind GitHub Copi-
lot [14], a widely utilized tool in the coding community.
Various studies have affirmed the positive impact of these
language models on programming productivity [16]-[18]. As
LLMs assert their prowess in supporting code development, a
natural extension of their capabilities leads us to explore their
potential in smart contract development. However, a critical
caveat emerges, i.e., their lack of awareness regarding secu-
rity concerns. Researchers have indeed recently demonstrated
that LLMs can generate code that may compromise security
standards [19]. In the context of smart contracts, code quality
and security are paramount because, depending on the type
of blockchain, they can be immutable or upgradable but with
non-trivial consequences. For these reasons, it is necessary to
guarantee code that is as optimized and safe as possible, and
it is recommended that software verification be applied by
design. Moreover, this last factor becomes more problematic
because of the lack of standard development architectures and
best practices [20]-[22].

This raises concerns about the reliability of LLM-generated
code, especially in enterprise blockchain frameworks such as
Hyperledger Fabric, where high standards of security, data
integrity, and business requirements must be guaranteed.

We explore the intricate complexities of smart contract
development, aiming to ascertain whether LLMs can meet the
stringent safety and reliability requirements in the blockchain
technology domain. Through rigorous testing, including all



publicly available static analyzers for Hyperledger Fabric and
6 distinct LL.Ms, we seek to contribute valuable insights into
the potential and limitations of LLMs in creating smart con-
tracts, ultimately addressing the imperative need for enhanced
awareness and precision in their generative processes.
Methodology: The main goal of our work is to investigate

the smart contracts produced by LLMs, focusing on the
Hyperledger Fabric framework, and to assess their quality and
security. To do so, we will apply static analyzers representing
the state-of-the-art in this field for Hyperledger Fabric smart
contracts. Our experimental evaluation will be focused on the
following three research questions:

RQ1 Are smart contracts generated by LLMs reliable and

secure?

Do code LLMs produce better (that is, more reliable and

secure) smart contracts? Do commercial LLMs produce

better smart contracts?

How to assess the quality and security of the generated

smart contracts, and what kinds of tools are most effec-

tive?

RQ2

RQ3

To answer these questions, we selected both open-access
and commercial LLMs (see Section III). From the static
analysis perspective, we applied both utility and verification
tools to the smart contracts generated by the LLMs (see
Section IV).

Paper structure: Section II introduces background no-
tions related to the paper. Section III deals with generating
smart contracts through large language models. Section IV
provides an overview of verification tools that we involved
in the assessment and security issues investigated. Section V
describes the experimental results of the assessment performed
on the smart contracts generated by large language models.
Section VI discusses related work. Section VII concludes the
paper.

II. TECHNICAL BACKGROUND

This section provides a high-level and comprehensive
overview of the key concepts essential for understanding the
contents and terminologies used throughout this paper.

A. Blockchain and Smart Contracts

Blockchain technology is a distributed and decentralized
computing architecture in a network where peers approve or
reject transactions towards that architecture through a consen-
sus mechanism. The architecture’s primary goal is to record
transaction information and data in an immutable manner and
put them into a ledger structured as a chain of blocks.

Typically, the blockchain architecture also supports a frame-
work to handle smart contracts, i.e., computer programs that
can be stored and executed within the blockchain, allowing,
for instance, to automate tasks, to make custom business logic
for the users, to perform agreement between the parties, etc.

1) Hyperledger Fabric: Hyperledger Fabric (HF) [23], [24]
is currently the most popular framework for the development
of enterprise-grade permissioned blockchain solutions. Com-
pared to other mainstream blockchains such as Bitcoin [6]

and Ethereum [7], it has become popular due to its flexibility,
scalability, and network settings, which allow solutions to
be tailored to specific industry needs. As reported by IBM
company [24], many organizations contributed to the HF
project, hosted by the Linux Foundation and adopted by the
mainstream cloud providers (e.g. IBM, AWS, Azure) [25].
In HF, smart contracts are also known as chaincodes and
can be written in several Turing-complete general-purpose
programming languages, where the most adopted one is Go. In
this paper, we use the more generic term, i.e., smart contract,
but feel free to interpret it as chaincode if that concept is
more familiar. The contracts are deployed and run on different
channels, i.e., sub-networks with their own blockchain ledgers
and policies. A ledger consisting of two components: the world
state (mutable), a key-value database which stores the current
state of contracts, and the blockchain-based transaction log
(immutable), which maintains the history of all transactions.

B. Software Static Analysis and Verification

The assessment of the quality and security of software has
been a relevant topic both in the scientific community and in
industry during the last few decades, and several approaches
to detecting bugs and vulnerabilities have been developed and
successfully applied to real-world software [26]. In this work,
we focus on static analysis [27], i.e., to inspect the code
without running it.

Since static code analysis does not need to build up con-
crete states to execute a program, it usually achieves better
coverages compared to dynamic analysis [27], as well as it
does not require complex architectures and test environments
to perform the analyses. Furthermore, dynamic testing of smart
contract code written by an LLM is difficult due to the lack
of environment information, such as blockchain state, external
contract interactions, and execution context, which can lead
to incomplete or misleading test results. In addition, LLM-
generated code may contain types of problems that might
prevent its execution and dynamic testing, since the programs
returned are usually partial and do not comprehend all the
code needed for their execution.

Smart contracts have been a focus of several works in this
field [28]-[30]. In addition, more in-depth studies have also
been performed for Hyperledger Fabric [31]-[33]. According
to [34], smart contract verification is challenging due to
blockchain properties (anti-tampering, decentralization, and
distribution) and the use of general-purpose languages further
increases the issues. Therefore, it is not certain that the code
can be fixed as easily and quickly as with traditional software
and requires to ensure security as early as possible in the
software development.

C. Large Language Models

Large Language Models (LLMs) are machine learning
models that leverage the capabilities of transformer architec-
tures [35] for language processing tasks. LLMs are increas-
ingly becoming an essential component in the development of
robust tools that leverage foundation models, either directly



trained in code or natural language, for downstream tasks such
as scammers detections [5], [36], [37], code generation [15],
code repair [38], [39], and reverse deobfuscation [11]. Typ-
ically trained on extensive datasets of natural language or
code [9], can acquire fundamental and general language under-
standing and generation skills. Additionally, they develop in-
context learning capabilities, enhancing their ability to adapt to
various tasks and contexts. The most common objective to pre-
train LLMs, such as GPT3 [9] and PaLM [40], is the language
modeling task, also called the autoregressive language pre-
training method. The autoregressive models, the focus of this
work, predict the next token—textual units, such as letters,
words, or sub-words—from a sequence of input tokens. Specif-
ically, autoregressive foundation LLMs have been proven to
be particularly advantageous in scenarios requiring few-shot
or zero-shot text generation capabilities [41]. For instance,
both GPT-3 [9] and PanGu-« [42] have showcased robust
performance in zero-shot and few-shot learning scenarios [43].

LIMs for Code Assistant.: In this work, we utilize
different code language models, which are trained to generate
functional code from a prompt describing the task of a function
or code unit. Specifically, recent works have introduced several
LLMs designed for code modeling, including DeepSeek [44],
CodeGen [13], CodeLLama [12], and others [14], [15], [40].
The models can generate appropriate code in different pro-
gramming languages and complete the code according to the
context description provided. This is accomplished by using a
text prompt and a function header as system input, i.e. input
to the model.

III. GENERATION OF CONTRACTS WITH LLMS

To the best of our knowledge, no publicly available dataset
exists that provides programming language-agnostic smart
contract descriptions in natural language. To address this gap,
we first constructed a dataset from scratch by combining
real-world examples with synthetically generated descriptions
produced via GPT-4. The dataset consists of 1,345 natural
language descriptions and names of smart contracts spanning
more than 50 application domains (e.g., finance, healthcare,
gaming, automotive, supply chain, sustainability, etc.). Of
these, 73 descriptions were collected from real-world sources,
while 1,272 were generated synthetically using the following
GPT-4 prompt: In particular, the user prompt designed used
for the specific synthetic smart contract description is the
following:

Write the descriptions in natural language of 100 smart
contracts for [APP_DOMAIN]

where the variable [APP_DOMAIN] denotes the name of an ap-
plication domain. Finally, the generation with LLMs computed
8063 smart contracts.

The natural language descriptions from this dataset were
then used as input to various LLMs (both open-access and
commercial) to generate smart contracts in Go for the Hy-
perledger Fabric framework [47]. In total, 8,063 smart con-
tracts were generated. The LLMs evaluated are summarized
in Table I. All models were configured with temperature

TABLE I: Information of selected LLMs

Name Open Access Provider | # Parameters (Billions)
deepseek-coder-6.7-instruct [44] v DeepSeek 6.7
deepseek-coder-33-instruct [44] v DeepSeek 33
CodeLlama-7b-Instruct-hf [12] v Meta 7
CodeLlama-34b-Instruct-hf [12] v Meta 34

Claude 3.5 [45] X Anthropic Unknown
GPT-4 [46] X OpenAl Unknown

T = 0 to minimize syntax errors, which are more common
at higher temperatures, particularly in smaller models. The
prompt design was adapted to each model to ensure determin-
istic and syntax-compliant outputs. Coding-specialized models
(DeepSeek-Coder, CodeLlama) required no special system
prompts; a simple prefix was sufficient to consistently generate
valid Go code for Hyperledger Fabric. Claude 3.5, being a
pure code model, required iterative refinement to enforce the
desired format. In contrast, GPT-4 required a custom system
prompt due to the lack of strict output control at the time:

1 System Prompt (GPT-4):
2 "You are a smart contract programmer and
always start your response with
3 \"Sure, here is the code in Go for

Hyperledger Fabric framework:

AURNRY

gO\ nn

IV. SETUP OF THE ASSESSMENT

In this section, we discuss how we chose the smart contracts,
tools, and issues that will be the target of our assessment.
Our focus is verifying code quality and security, which per-
tain to non-functional requirements, rather than the specific
behaviors related to business or application logic, which are
functional requirements. Furthermore, it is orthogonal to our
study to evaluate the semantics of natural language description
compared to the semantics of the generated code. In fact,
it is not possible to apply automatic tools to verify their
correctness since the dataset definitions are not written in a
formal way. Moreover, there are theoretical limits to what
can be determined automatically, such as non-trivial semantic
properties, as outlined by the Rice’s theorem.

A. Inspection of generated smart contracts

Figure 1 summarizes the findings of this section.

First, we analyzed the contracts to understand if they are
syntactically correct and, therefore, potentially compilable. For
this operation, we used gofnt [48], a tool that performs a
static analysis of the code and returns an error if the analyzed
program does not satisfy the grammar of the Go language. In
this way, we distinguished well-formed smart contracts from
ill-formed ones. Then, we manually investigated the code of
the general smart contracts to check if they contained some
application logic. In particular, during the data preparation
process, two researchers, with experience in smart contract
development and LLMs for code generation, independently
reviewed a subset of the generated code to identify contracts
with actual application logic. They looked for elements such
as state manipulation, conditional logic, and domain-relevant
operations. Disagreements were resolved through discussion



TABLE II: Average lines distribution per generated contract

LLM Blank Lines | Comment Lines | Physical LoCs
CodeLlama 60.34 53.66 244.43
CodeLlama34 49.55 37.06 216.19
DeepSeek-Coder 18.88 0.21 69.80
DeepSeek-Coder33 19.04 4.11 87.84
Claude3.5 29.40 8.99 130.87
GPT-4 21.77 0.22 81.23

to ensure consistency. In this way, we filtered out trivial or ill-
formed outputs before applying static analysis, not to assess
correctness in a formal sense.

We also identified duplicated contracts which comprised
of less than 3% of the generated data. Although they were
generated by different sentences written in natural language,
the generated contracts have the same MDS5 hashes. In check-
ing them, we believe the main reason is that the model is
confused by similar contract descriptions. Another aspect we
observed is that some samples exhibit truncated code. This
issue can generally be attributed to two root causes: either the
specified token size was insufficient for the model to generate
a complete, well-formed contract, or the model became stuck
in a repetitive loop, a known phenomenon associated with
maximization-based decoding strategies [49]. One potential
mitigation is to employ a different sampling strategy, which
can reduce the occurrence of this issue. However, exploring
alternative decoding strategies is beyond the scope of this
work. For samples where the truncation was due to the first
issue, increasing the maximum token size, if supported by the
model, resolves the problem.

Finally, we collected statistics on the lines of code (LoCs)
using the tool cloc [50]. Table II provides the average lines
of code per file. Note that although the generated code for
each smart contract is small in size, it accurately reflects
real smart contracts. For instance, many deployed contracts
in the Ethereum main network consist of fewer than 200
instructions [51]. In terms of LoCs, this is very close to the
averages of our generated contracts, as there are typically
multiple instructions per line.

B. Verification Tools

Regarding smart contracts, there are several studies on
Hyperledger Fabric issues [31]-[33], but currently, only a
few analyzers are capable of detecting them. Moreover, as
reported in Section II-B, we are interested in static analyzers
that automatically examine the code without executing the
program. For instance, Chaincode Analyzer [52], by Fujitsu
from Hyperledger Labs, and Revive"CC [53], an extension of
the Revive analyzer [54] for chaincodes. Both tools represent
the program using abstract syntax trees (ASTs), applying static
intra-procedural analyses on them and using a syntactical
approach to detect different issues (such as non-determinism,
read after write, ...). Lv et al. [31] and Yamashita et al. [32]
propose similar tools inspired by Chaincode Scanner and
Revive"CC, but they only perform syntactic checks although
in a more accurate way.
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Fig. 1: Distribution of the generated contracts analyzed with
gofmt and cloc.

Instead, a semantic-based approach is followed by
ZEUS [55] and GoLiSA [56], [57]. Both tools propose
semantics-based static analysis approaches based on abstract
interpretation theory [58], [59]. Abstract interpretation pro-
vides a systematic way to approximate program semantics
with an abstract version of them and to reason about some
program properties, achieving mathematical guarantees during
the analysis, such as ensuring the presence or absence of
certain code properties, bugs, and vulnerabilities.

Tools providing a primarily syntactic analysis (Chaincode
Analyzer, Revive"CC, Lv et al., and Yamashita et al.) perform
quickly and yield straightforward results. Since these tools can
only analyze how a program is written, they are typically
limited to either (i) searching for known patterns that are
indicative of security issues or (ii) prohibiting the usage of
entire APIs and language constructs to ensure the absence of
exploits and errors.

However, an assessment of the code quality and security
cannot only include syntatic analyses because searching for
patterns is inherently unsound: as with any bug, a security is-
sue may appear in various forms, and attempting to enumerate
them all within such a tool is impractical. Consequently, afore-
mentioned tools may overlook certain contract issues, making
insecure contracts mislabeled as secure. On the other hand,
prohibiting the use of certain APIs and language constructs
severely restricts a developer’s options. Developers are left
with the choice of either following the tool’s decision not to
use it or dealing with its numerous warnings.

For these reasons, we also considered a tool with semantic-
based analyses (such as ZEUS and GoLiSA), which can pro-
vide guarantees regarding their findings. However, computing
a program’s semantics is generally undecidable. Since the
semantics cannot be precisely computed, such tools operate on
an over-approximation of it to maintain computability, which



TABLE III: Issues covered by the tools
Revive"CC

Issue GoLiSA
Non-determinism

Read-Write Issues

Phantom Reads

Unhandled Errors

Untrusted Cross-Contract Invocations
Cross-Channel Issues

Numerical Overflows

Divisions By Zero

WX X X X XN

AN N NN N

can result in false positives due to the inherent limitations of
the approximation itself.

In this paper, we use both categories of tools to increase the
likelihood of detecting security issues by applying different
checks. In particular, we choose Revive"CC, and GoLiSA as
linter and semantic-based tool, respectively. The reason is
that they were the only publicly available tools among the
aforementioned ones together with Chaicode Analyzer, which
however we excluded because it failed in more than 60% of
analyses due to mainly parsing errors.

Table III presents, for each tool, whether they cover the
security issues considered in this work or not, while Table IV
provides a summary description of them.

V. EXPERIMENTAL RESULTS

In this section, we report our findings when analyzing
the smart contracts generated with LLMs (Section III) with
Revive"CC, and GoLiSA, aiming at discovering the issues
presented in Table IV. All analyses have been performed on
a machine equipped with an AMD Ryzen 9 3950X 16-Core
at 3.50 GHz, 128 GB of RAM, 20 TB SSD, running Ubuntu
22.04.3 LTS, Open JDK version 21. During the analysis, 8
GBs of RAM were allocated to the Java Virtual Machine. As
targets of the analyses, we used the generated well-formed
smart contracts without duplicates, i.e., 7550 smart contracts.

We perform a quantitative evaluation to answer the research
questions listed in Section I, and a qualitative evaluation
presenting several examples of the issues found by the tools
on the generated smart contracts.

A. Benchmark Coverage

Table V reports for each verification tool, the number of
contracts analyzed successfully, the number of contracts par-
tially analyzed (the analysis was successful for some checks,
while not for others), the number of contracts on which the
analysis failed (all checks led to analysis failures), the number
of contracts affected by at least one vulnerability, and the
number of warnings generated by the analysis.

Before discussing the table, it is worth noting that (i) some
contracts generated by CodeLlama miss to import packages
of methods that are used in the code, and (ii) the majority
of contracts generated by CodeLlama and few of the contracts
generated by DeepSeek-Coder and DeepSeek-Coder33 contain
typing errors (as an example, consider Figure 2 where a
string is first compared with a numerical quantity and then
used inside a subtraction). Thus, it is expected that the tools

O 00 N N R W N =

userlBytes, _ APIstub.GetState (userl)

userlBalance

string (userlBytes)
if userlBalance < amount {

}

userlNewBalance userlBalance - amount

Fig. 2: Typing errors in deepseek-coder/1115.go.

highlight these situations by not issuing warnings for the
former case and by either failing the analysis or issuing
warnings for the latter case.

Revive"CC and GoLiSA successfully process and analyze
the majority of the contracts under analysis: Revive"CC fails
on 4 contracts only (due to runtime-exceptions), while GoLiSA
analyzes successfully more than 93% of smart contracts (7071
out of 7550), partially around 6% (473 out of 7550), and
fails to analyze less than 1% (6 out of 7550). In GoLiSA,
smart contracts that are partially analyzed or fail to perform
all analyses are primarily due to increased analysis complexity,
timeouts that stop execution after an excessive amount of time
(set to 10 minutes), and other tool exceptions. In terms of
warnings generated, GoLiSA issues sensibly more warnings
than Revive"CC: this is not only due to Revive"CC missing
checks for four and three of the targeted security issues,
respectively, but also due to the deeper analysis performed
by GoLiSA’s semantic engine.

B. Quantitative evaluation

In this section, we classified the warnings coming from
the analysis results. To this end, as usual for static analysis
benchmarks, we set the ground truth performing an in-depth
manual investigation of the code of the generated smart con-
tracts and the program points highlighted by analysis reports
to determine what the real issues were. Specifically, they were
manually inspected by a software security expert, specialized
in blockchain and smart contract software, who classified them
as true or false positives. The classification was based on
the formal definition of the various properties detected by
the analyzers. Table VI reports the number of true positives
(that is, warnings reporting real vulnerabilities that can happen
during the contract’s execution)) for each verification tool on
contracts generated by each LLM by Revive"CC, and GoLiSA,
respectively.

Column ND reports warnings about non-determinism, col-
umn RW reports warnings about read-write set issues, column
UE shows warnings related to unhandled errors, column UCCI
displays warnings about untrusted cross-contract invocations,
column OVF reports warnings about overflows and under-
flows, and column DIV reports warnings on divisions by zero.

Cells containing - highlight the missing coverage of the
tool for that issue. The number of false positives (that is,
warnings reporting not real vulnerabilities) of each analyzer



TABLE IV: Description of HF issues

Issue

Description

Non-determinism (ND)

Non-deterministic values (i.e., a value that varies among different peers) could lead to critical conse-
quences when they are candidates for writing into the world state, because the consensus mechanism
might reject the transaction associated with that smart contract executions [57], [60].

Read-Write Issues (RW)

Read-your-writes semantics [61] are not supported in HF. If multiple writes occur for a given key, only
the last one executed will be committed to the ledger state. If the value for a given key is read, it is
retrieved from the committed state, even if a write was previously executed to update the value of that
key [62].

Phantom Reads (PR)

Transactions may query the world ledger state with specific APIs, but during execution, another transaction
modifies the data set, leading to performance bottlenecks and unexpected results during validation [63].

Unhandled Errors (UE)

Errors that are not explicitly handled may expose smart contracts in vulnerable or unexpected states [64].

Untrusted Cross-Contract Invocations (UCCI)

Cross-contract invocations must be carefully managed to prevent arbitrary code executions and unexpected
behaviors [65]-[67].

Cross-Channel Issues (CCHI)

Cross-contract invocations within different channels may lead to a lack of transparency and missing
commitments in the world ledger state [31], [32]

Numerical Overflows (OVF)

As computers have finite memory, there is a limit to the numbers that can be represented. When such
limit is breached a numerical overflow (or underflow) occurs [68]. In general, overflows and underflows
may have critical consequences in the blockchain context. For instance, an attacker can exploit it by
repeatedly invoking a smart contract function with a numerical overflow bug that increases a value, to
drain more money than it should [69], [70].

Division by Zero (DIV)

If a smart contract does not handle division by zero properly, it can cause runtime errors and transaction
failures.

TABLE V: Raw analyses results for verification tools

Revive"CC

GoLiSA

Model # Fully Analyzed # Failures # Affected # Warnings

# Fully Analyzed

# Partially Analyzed # Failures # Affected # Warnings

CodeLlama
CodeLlama34
DeepSeek-Coder
DeepSeek-Coder33
Claude3.5

GPT-4

1147 0 24 28
1171 2 28 109
1278 7 9
1288 3 3
1324 605 620
1339 76 82

[=3 SRele)

1009 137
1011 160
1236 41
1226 62
1277 46
1312 27

125 326
155 403
355 549
550 912
764 1738
323 547

SWO O~

been omitted for clarity, but their rate (percentage w.r.t. the
total number of warnings issued by the tool) will be reported
in the following. Revive"CC raises true positives (687 alerts)
about non-determinism only, and none about the other issues
they support. The tool has also the ~19% of false positive
rate. Instead, GoLiSA raises a total of 4012 true positives,
with a false positives rate of ~10%. While the number of true
positives might seem excessively high w.r.t. the Revive"CC,
it is worth noting that the majority of them are issued on
unhandled errors and overflows/underflows, that is, on issues
that Revive"CC does not cover. The difference between the
syntactic and semantic approach is evident: while incurring in
a higher computational cost, semantic analyzers like GoLiSA
are able to achieve a deeper understanding of the behavior of
each program and can thus report more significant warnings
to the users. In fact, thanks to GoLiSA’s findings, we can rule
almost 29% (2157 out of 7550) of the contracts generated
by the LLMs considered in this work as insecure, since they
contain at least one vulnerability. Note that this number does
not take into account invalid contracts (e.g., ones without code
or with typing errors, as discussed in Section V-A).

a) RQI: Figure 3 plots the percentage of smart contracts
that are affected by different types of issues identified by static
analysis means . This plot underlines that(i) some issues does
not appear (i.e. PR), (ii) some issues (UCCI, CCHI, and DIV
in particular) appear only on very few smart contracts with less
than 1%, (iii) other issues (RW, ND and OVF) appear on a non-
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Fig. 3: Percentage of contracts affected by each issue.

negligible subset (between 1% and 9%), and (iv) unhandled
read-write errors (UE) affects almost a tenth of the contracts
generated. This shows that generated smart contracts are not
secure and reliable since they need a deep revision to catch
and fix these issues. Still, such a revision can be focused on
some specific properties and partially automated using existing
static analysis tools.

b) RQ2: Figure 4 plots the number of true positive
warnings produced by all the analyzers on the smart contracts
generated by different LLMs. Our experiments applied 6
different LLMs, four open-source ones targeting the code
generation (CodeLama, CodeLama34, DeepSeek-Coder, and



TABLE VI: True positives per issue

Revive"CC GoLiSA
Model ND RW DIV ND RW PR UE UCCI CCHI OVF DIV
CodeLlama 3 0 0 6 7 0 34 0 0 108 7
CodeLlama34 89 0 0 17 57 0 70 0 87 6
DeepSeek-Coder 6 0 0 10 63 0 334 2 0 112 2
DeepSeek-Coder33 3 0 0 1 6 0 846 2 2 41 0
Claude3.5 533 0 0 80 0 0 3 0 0 708 70
GPT-4 52 0 0 59 0 0 320 0 0 141 11
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Fig. 4: True positive warnings in the contracts per LLM.
surprising that overall, DeepSeek-Coder33 (using 33 billion
2000 ® ND features) performs quite better than DeepSeek-Coder (using
1607 RW only less than 7 billion parameters). However, it contains
o 1500 ® PR many more issues with unhandled read-write errors, and it
2 1197 m UE is worth further investigation to understand why this happens.
% = UCC Our assessment does not show that a specific type of LLM
> 973 (commercial or code-specific) produces better smart contracts.
2 1000 ® CCHI i s
= 686 OVF c¢) RQ3: Figure 5 plots the number of true positive
g warnings each analyzer produces for each type of analysis. The
3 500 DIV plot makes evident that (i) the amount of positives produced
** 33 " about numerical overflows and unhandled read-write errors
0 0 oft42 exceeds by far the other warnings, (ii) only GoLiSA (that is, a
0 — semantic analyzer) detects such issues, and (iii) the amount of
Revive*CC GoLiSA

Fig. 5: True positive warnings produced by the analyzers

DeepSeek-Coder33), and two generic and commercial (Claude
3.5, GPT-4) automatically. The plot underlines that the security
of the generated smart contracts is comparable since the
number of true positives produced on the code generated by
different LLMs is comparable. While GPT-4 performs slightly
worse than the others, it shows that even for generic LLMs,
it is possible to produce smart contracts as secure as the
ones produced by code-specific LLMs. In addition, it is not

reports about other properties is comparable among different
analyzers. Note that GoLiSA is the only semantic analyzer. On
the one hand, numerical overflows and unhandled read-write
errors require deep (semantic) analyses to achieve an accept-
able precision; therefore, only GoLiSA detects them. On the
other hand, there is no relevant difference between syntactic
and semantic analyzers for other properties. For instance, non-
determinism can be easily detected on small smart contracts
produced by LLMs by checking if a non-deterministic library
is called. Note that semantic analysis comes at a cost: it
requires more computational resources and time, and it might
support only a restricted set of smart contracts (e.g., even if a
program does not type check, a syntactic analyzer usually can



Machine{ID:
args[1l],

var machine
Condition:
time.Now () }

args[0],
LastMaintenance:

machineAsBytes, _ json.Marshal (machine)
APIstub.PutState(args[0], machineAsBytes)

Fig. 6: Issue of non-determinism in gpt-4/1013.go.

process it, while a semantic one cannot). Overall, we conclude
that for simple analyses, existing analyzers assess the security
of smart contracts similarly, while for more complex properties
(needed to perform a deep and reliable assessment), semantic
analyzers, such as GoLiSA, are needed.

C. Qualitative evaluation

In the following, we show how examples of the security
issues described in Table IV were discovered inside the target
benchmark.

1) Non-Determinism: Figure 6 reports a non-deterministic
contract generated by GPT-4. At line 1, a machine is created
settings several values, and in particular LastMaintenance
using the method time.Now (). Then, the machine object is
converted into bytes at line 3, and its storage in the blockchain
is proposed using PutState at line 4. In this case, the
source of non-determinism is to the method time.Now (),
as it depends on the local machine clock, and it may differ
depending on the machine on which it is executed. The reason
is that, in the consensus mechanism, the involved peers (who
have potentially different machines) may not reach a consensus
due to too many different time values, leading to the failure
of the transaction [57].

In this case, Revive"CC detects syntactically the "time"
import at the beginning of the program thought pattern
matching. Instead, GoLiSA performs an information flow
analysis [57] starting from time.Now (), then machine, un-
til APIstub.PutState (args[0], machineAsBytes) trig-
gering an alarm on it because a non-deterministic value
has been propagated at blockchain write operation thought
machineAsBytes.

2) Issues of Read-Write Set Semantics: Figure 7 contains
a smart contract generated by DeepSeek-Coder. At line 9, the
method transferToken performs a transfer of an amount
of tokens from one user to another. The user information
are collected in the variables from and to at lines 11-12,
which are coming from the transaction input retrieved by
GetFunctionAndParameters () at line 2. Therefore, being
an arbitrary user input, they can be assigned any value. The to-
ken transfer happens at lines 13-16, where GetState (from)
yields the current token value of from user from the ledger,
PutState (from, []byte(value - args[2])) removes
the value args[2] from from user and writes the results on
the ledger, GetState (to) yields the current token value of to
user from the ledger, and PutState (to,
+ args[2])) adds the value to to user.

[Ibyte (value

N=R- RN e R

func (s *SmartContract) Invoke (APIstub
shim.ChaincodeStubInterface) sc.Response
{
function, args
APIstub.GetFunctionAndParameters ()

} else if function == "transferToken" {
return s.transferToken (APIstub, args)

}

func (s *SmartContract)
transferToken (APIstub
shim.ChaincodeStubInterface,
[Istring) sc.Response {

args

from

to args[1]

value, _ APIstub.GetState (from)

APIstub.PutState(from, []byte(value -
args([2]))

value, APIstub.GetState (to)

APIstub.PutState(to, [lbyte(value +
args([2]))

args[0]

Fig. 7: Read-Write set issues in deepseek-coder/1245.go.

In this contract, there are read-after-write and over-write
issues that can be exploited by an attacker to increase
its amount of value. Since from and to can have any
value, nothing prevents an attacker from creating an in-
put where the value of from is the same as to (transac-
tion to oneself). In this scenario, suppose to have an ini-
tial state of ledger {"attacker": 10}, where the attacker
has 10 units of value. If the attacker sends the transac-
tion input args {"attacker", 5}, we
have that from = "attacker" and to = "attacker" at
lines at lines 11-12, while value 10 at line 13. Then,
PutState("attacker", [lbyte (10 - 5)) happens at
line 14, but value 10 at line 15 (read-after-write issue)
as it is still read from the pre-execution state. This is followed
by PutState ("attacker", [lbyte (10 + 5)) at line 16.
Moreover, PutState instructions at lines 14 and 16 have
the same user "attacker": the only value written in the
ledger is 10+5 (over-write issue). Therefore, at the end of the
computation of the method transferToken, no subtraction
is done for the attacker, and the 5 units of value are added
instead of keeping the attacker’s value unchanged.

Regarding the detection of read-write set issues, Revive"CC
detects only read-after-write issues. Their work matches
method signatures. Then, for each read-write tuple, they check
the actual parameters in each key position and perform a
syntactic check on the token syntax of actual parameters.
However, this approach leads to some limitations. For instance,
two variables used as keys with an equal stored value but
named differently will be considered different by the analyses,
leading not to detection of the issue as in the case of Figure 7.

"attacker",
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func (s *SmartContract) transferAsset (stub
shim.ChaincodeStubInterface, args
[Istring) peer.Response {

assetAsBytes, _ = Jjson.Marshal (asset)
stub.PutState (args[0], assetAsBytes)

return shim.Success (nil)

Fig. 8: Unhandled error in deepseek-code33/1197.go.

Instead, GoLiSA detects both read-after-write and over-write
issues. In particular, GoLiSA over-approximates the possible
string values of keys exploiting a string value analysis. Then,
after the computation, the analyzer inspects the position of
read and write operations traversing the control-flow graphs
of the program and, in case, triggers the alarms.

3) Phantom Reads: No issues related to phantom reads
were found in the dataset.

4) Unhandled Read-Write Errors: The smart contract in
Figure 8, generated by DeepSeek-Coder33, ignores possible
errors during its execution. The goal of transferAsset
is to transfer an asset from one owner to another. At
line 4, the writing is carried out on the ledger by the
method Putstate. However, any return errors of the
PutState are not collected in a variable (e.g.
stub.PutState (args[0], assetAsBytes))andaﬂer
checked. Furthermore, the transferAsset returns always
shim.Success (line 6), i.e. that the transaction was suc-
cessful. Hence, if the PutState fails and it does not write
the value in the ledger, the transaction would be mistakenly
considered successful. This leads to a serious logical error
because a user might think that the asset was transferred
correctly when, in fact, it was not transferred due to an error.

Regarding verification tools, Revive"CC does not provide
checks for the detection of unhandled errors. Instead, GoLiSA
performs a check to detect blank identifiers' and unassigned
error values of blockchain read and write operations.

err

5) Untrusted Cross-Contract Invocations: The snippet in
Figure 9 shows a smart contract generated by DeepSeek-
Coder. At line 2, it retrieves the input of a transaction
request with the function GetFunctionAndParameters. At
line 4, it calls the method swapAssets, and inside its
body the input is assigned to the variables chaincodeName,
chaincodeFunc, assetID, newOwner (lines 8-11). Then, the
values of variables are used to perform InvokeChaincode,
a cross-contract invocation at line 13. In this case, the input
provided by GetFunctionAndParameters is considered
untrusted because any user could create a transaction passing
an arbitrary input to it. Moreover, input checks or sanitizers
are not present in the contract: an attacker could create an
input providing a malicious value for chaincodeName (i.e.

Thttps://go.dev/ref/spec#Blank_identifier

8]

N W W

=

11

function, args
APIstub.GetFunctionAndParameters ()
if function "swapAssets" {

return s.swapAssets (APIstub,

args)

func (s xSmartContract) swapAssets (APIstub
shim.ChaincodeStubInterface, args
[Istring) sc.Response {
chaincodeName :=
chaincodeFunc
assetID
newOwner

= args|[0]
1= args|[1l]
args|[2]

args[3]

response
APIstub.InvokeChaincode (chaincodeName,
[1[]byte{[]lbyte (chaincodeFunc),
[lJbyte (assetID), []lbyte (newOwner)},

H")

Fig. 9: UCCI in deepseek-coder/832.go.

func (s *SmartContract)
transferAsset (APIstub
shim.ChaincodeStubInterface,
[Istring) sc.Response {

args

crossChainBridgeAsBytes, _
APIstub.GetState (args([0])
crossChainBridge CrossChainBridge({}

err :
json.Unmarshal (crossChainBridgeAsBytes,
&crossChainBridge)

response APIstub.InvokeChaincode (
crossChainBridge.ChaincodeName,
chaincodeArgs,
crossChainBridge.ChannelName)

Fig. 10: Cross-channel issues in deepseek-code33/653.go.

the smart contract where the assets are transferred), diverting
the asset to another owner and effectively stealing the asset.

Regarding verification tools, Revive"CC does not provide
checks for the detection of UCCIs. Instead, GoLiSA tracks
untrusted information in the program, exploiting also, in this
case, an information-flow approach.

6) Cross-Channel Issues: The snippet in Figure 10 shows
a smart contract generated by DeepSeek-Coder33, containing
potential cross-channel issues. The goal of transferAsset
is to transfer an asset from one owner to another. At
line 3, GetState(args[0]) reads the value of an ar-
bitrary key coming from an transaction input and it is
used to populate the object CrossChainBridge at line
6. Then, the value of CrossChainBridge.ChannelName
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func (s *SmartContract) 1
distributeDividends (APIstub
shim.ChaincodeStubInterface, args
[Istring) sc.Response {

totalShares := 0
totalShares += shareholder.Shares

if totalShares == 0 {
return shim.Error ("No shares found")

N=Re RN e R e )

}

S

dividendPerShare := dividend / totalShares 11
12

Fig. 11: Integer overflow in gpt-4/153.go.

is used as target channel by the cross-contract invocation
InvokeChaincode at lines 8-9. The main problem is that
CrossChainBridge.ChannelName can be change over the
time depending to the transaction input. Hence, the target
channel can be changed after the code deployment. It leads
leads to two issues: (i) it keeps the same transaction context
and (ii) it could be lead to missing commitment of write
operations in world ledger state of the called contract. In the
first case, if the target channel is different from the deployment
channel of callee contract, no data about CCI execution is
recorded in the target channel, leading to a lack of transparency
in blockchain operations and to potential privacy and security
risks. In the second case, if the target channel is different and
the invoked contract executes write-state operations, these will
not affect the channel’s ledger and the code will not update
data within the world state.

Regarding verification tools, Revive"CC does not provide
checks for the detection of cross-channel issues. Instead,
GoLiSA detects both transparency issue and missing commit-
ment issues. In particular, GoLiSA implements the TARSIS
domain [71], [72] to approximate the possible string values
of channels. Then, after the string analysis computation, the
analyzer inspects the position of cross-contract operations and,
in case, triggers the alarms.

7) Numerical Overflows: The code in Figure 11, taken from
the contracts generated by GPT-4, exhibits a possible numer-
ical overflow. In line 5, the method distributeDividends
collects the total share summing the values of shareholders.
Then, it performs a check at line 7 to avoid division by
zero at line 11, where it is computed the value of dividend
per share. In this contract, an integer overflow may occur at
line 5, and the code does not have any check to prevent the
problem. In fact, if the sum of the shares were to exceed the
limit of the integer types, the value would become negative,
and the consequence would be negative dividends that remove
value rather than add it. In this case, syntactic checks cannot
help in detecting overflow problems since they ignore program
semantics. Then, GoLiSA is the only tool at our disposal

func (s *SmartContract)
applyForMortgage (APIstub
shim.ChaincodeStubInterface, args
[Istring) sc.Response {

income, _ := strconv.Atoi(args[l])
loanAmount, _ := strconv.Atoi (args[2])
var status string
if income/loanAmount < 2 {

status = "Rejected"
} else {

status = "Approved"

}

Fig. 12: Possible division by zero in gpt-4/137.go.

to detect these issues, performing numerical analyses based
on semantics abstraction to approximate the possible integer
values of variables. In particular, GoLiSA implements the
interval domain [58], [73] as a value domain in order to track
the abstract values of variables. In this way, after the analysis
computation, it is possible to build a semantic check to in-
spect the program points where arithmetical operations occur,
issuing alarms if they can lead to overflows or underflows.

We also conducted an in-depth manual investigation to
ensure the presence of checks to prevent overflows/underflows
within the generated contracts. However, regardless of the
LLM, there are no guards, checks, or prevention mech-
anisms relating to numerical overflows/underflows in the
generated smart contracts.

8) Divisions By Zero: Consider the smart contract snippet
in Figure 12, generated by GPT-4. At lines 4, it retrieves
an arbitrary string value from args([2] that is converted in
integer value by the function strconv.Atoi. Being statically
unknown, this value can also be zero at runtime. Hence, the
expression income/loanAmount at line 6 could be lead to a
division by zero, not allowing the user to approve or reject a
mortgage, i.e. the applyForMortgage method cannot fulfill
its purpose.

The division by zero is a classic arithmetic issue that can
lead to unexpected results or execution failures. Currently,
the Go compiler (Go 1.22) can syntactically detect the direct
division by zero. For instance, the expression 1/0 produces an
error at compile time. However, the compiler is not able to de-
tect cases where the evaluation of a divisor may yield the value
zero. For instance, the expression strconv.Atoi (args[2])
does not produce any compilation errors. In these cases, the
compiler does not consider the program semantics of functions
and methods, and then the division by zero is handled at run-
time, generating a panic error because something unexpected
occurs, and the program cannot proceed safely. In the same
way, Revive"CC is not able to detect the issue reported in
Figure 12 because supports only some syntactic checks for
the detection of divisions by zero. As in the case of numerical
overflows, it is necessary to reason about program semantics



to compute the possible numerical values of a divisor in
non-trivial contracts. Instead, GoLiSA can infer the possible
intervals of numerical values related to divisors and check
whether the value zero is included in them.

VI. RELATED WORK

In this section, we first discuss related work regard the
usage of LLMs for code synthesis and software enginerring
in general followed by approaches for static analysis of smart
contracts. Then, we address work dealing with the security
of LLM-generated code and finally, studies that address the
intersection of LLMs and the security of smart contracts.

A. LLMs for software engineering

LLMs have profoundly influenced the software engineering
landscape [16], [74]. These models, characterized by diverse
architectural frameworks and objective functions, have been
instrumental in advancing code comprehension and genera-
tion tasks [12], [14]. Among the noteworthy instances are
Deepseek-Coder [44], CodeLlama [12], and CodeGen2.5 [13],
purposefully crafted to address multifaceted challenges encom-
passing code classification, retrieval, translation, repair, and
summarization. These models generate functionally correct
programs based on user-provided prompts [15], enhancing
developers’ productivity [16].

B. Static Analysis of Smart Contracts

In this study, we focus on harnessing the capabilities of
LLMs for the explicit purpose of smart contract generation,
with a subsequent focus on rigorously testing these contracts
for vulnerabilities. Section IV-B discusses what tools are
available for Hyperledger Fabric smart contracts and justifies
how we chose the static analyzers used in our experiments. A
relevant research effort has been focused on the static analysis
of Ethereum smart contracts [75], [76]. Our work focuses on
HF because it is de facto the standard for enterprise blockchain
platforms [24].

C. Security of LLM-generated code

Recently, several approaches have focused on the security
of LLM-generated code. He and Vechev [19] assessed the
security of such code through adversarial testing and then
guided program generation to generate secure or unsafe code.
Even if using a different approach based on dynamic analy-
sis, the security assessment of state-of-the-art LLM-generated
code resulted in statistics similar to ours (40.9% unsafe code).
Similarly, Pearce et al. [77] concluded by manual inspection
that about 40% of the code generated by GitHub Copilot
contains relevant vulnerabilities. Khoury et al. [78] conducted
a similar analysis to assess the security of code generated by
ChatGPT. Further studies [79] consolidated these statistics for
various LLMs. On the one hand, our work (and in particular
RQ1) further consolidates this result, specifically focusing on
HF smart contracts. On the other hand, we take a step further
by comparing different LLMs (RQ2) and by applying and
comparing different static analyzers (RQ3) instead of dynamic
analyses or manual inspection.

D. Intersection of LLMs and Smart Contract Security

Furthermore, Sun et al. [80] introduced GPTScan, a novel
approach that combines generative pretrained transformers
(GPT) with program analysis using static analysis to detect
logic vulnerabilities in solidity files and contract projects.
This method leverages the language understanding capabilities
of GPT to identify potential security flaws that traditional
analysis tools might overlook. For token contracts they achieve
high precision and for large projects acceptable precision.
Moreover, the tool PropertyGPT by Liu et. al. [81] addresses
the topic of formal verification of Solidity smart contracts
using retrieval augmented generation. The authors find that
their tool can detect several real-word vulnerabilities in smart
contracts. Besides vulnerability detection, another approach
by Wang et. al. [82], ContractTinker performs automated
vulnerability repair on smart contracts written in Solidity using
chain-of-thought to break the task down into subtasks. The
evaluation shows a high success rate. To the best of our
knowledge, none of these approaches analyze smart contracts
in the Go language for Hyperledger Fabric.

VII. CONCLUSION

In this paper, we applied static analyzers for Hyperledger
Fabric smart contracts automatically generated by various
LLMs. Our main goal was to assess if the generated code is
secure, and if there are noticeable differences between different
LLMs and static analyzers. For this reason, we selected state-
of-the-art tools with different features (commercial or open
source, specific for code generation or generic for LLMs,
syntactic or semantic for static analyzers).

Our experimentation shows that the generation of HF smart
contracts with LLMs does not seem mature enough for its
adoption in industrial contexts, as the generated code contains
several security issues (RQ1). This applies to both open-source
code-specific and commercial general-purpose LLMs (RQ2).
Static analyzers can help to automatically identify code issues,
even if only deep (that is, performing computationally expen-
sive semantic) analyses are able to catch a representative set
of issues both from a quantitative and a qualitative perspective
(RQ3). In future work, we plan to investigate how LLMs
can be improved and fine-tuned to produce more secure smart
contracts.
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