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ABSTRACT
Hyperledger Fabric is a well-known framework for developing

enterprise blockchain solutions. Developers of these blockchains

must ensure the correct execution of read and write operations so

that the smart contracts’ application logic is consistent with the

business logic. In this paper, we present a static analysis approach

based on abstract interpretation to detect read-write set issues in

Hyperledger Fabric smart contracts and avoid bugs and critical

errors that could compromise blockchain applications. The analysis

is implemented in GoLiSA, a semantics-based static analyzer for

Go applications. Our experimental results show that the proposed

analysis can detect read-write set issues on a significant benchmark

of existing applications. Moreover, it achieves better results in de-

tecting read-after-write issues than other well-known open-source

analyzers for Hyperledger Fabric smart contracts.

CCS CONCEPTS
• Theory of computation → Program verification; • Software
and its engineering → Formal software verification; Auto-
mated static analysis; Software verification;

KEYWORDS
Smart contracts, Chaincode, Blockchain, Hyperledger Fabric, Dis-

tributed Ledger Technology, Static analysis, Abstract interpretation,

Read after write, Read-write conflict, Read your write consistency.

ACM Reference Format:
Luca Olivieri, Luca Negrini, Vincenzo Arceri, Pietro Ferrara, and Agostino

Cortesi. 2025. Detection of Read-Write Issues, in Hyperledger Fabric Smart

Contracts. In Proceedings of ACM SAC Conference (SAC’25). ACM, New York,

NY, USA, Article 4, 9 pages. https://doi.org/xx.xxx/xxx_x

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC’25, March 31 – April 4, 2025, Sicily, Italy
© 2025 Association for Computing Machinery.

ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00

https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
Hyperledger Fabric (HF) [2] is a popular open-source platform for

developing custom permissioned blockchain ledgers, hosted by the

Linux Foundation. HF supports the development and execution of

chaincodes [13] (i.e., smart contracts), which are programs, primarily

written in the Go programming language, that are deployed and

executed within the blockchain ledger. Chaincodes can interact

with and modify the world state (key-value data structure) through

explicit read and write operations. In this way, they can query the

ledger to retrieve existing information and store data, maintaining

an immutable record of the changes in the ledger (blockchain data

structure).

However, write operations are committed only after the result

of a chaincode execution is simulated and validated by blockchain

peers. Consequently, within the same execution, read-your-writes
semantics are not supported [15] leading two non-trivial behaviors:

(i) if multiple writes occur for a given key, only the last one executed

will be committed to the ledger state; (ii) if the value for a given

key is read, it is retrieved from the committed state, even if a write

was previously executed to update the value of that key.

Hence, naive programming by developers attempting to achieve

such semantics can lead to critical errors and unexpected behavior.

Therefore, it is crucial to detect potential issues arising from these

read-write semantics.

According to Ren et al. [34], the state-of-the-art for read-write

risk detection in HF has shortcomings related to a low detection

accuracy and coverage of a large number of read and write logic in

actual projects. In addition, they do not follow a sound approach [7],

leading these tools to produce several false negatives, which results

in the deployment of immutable issues in the blockchain. In this

paper, we make the following contributions:

• a more comprehensive summary of the issues related to

read-write set semantics;

• the design and implementation of an analysis for detecting

read-after-write issues using static analysis via abstract in-
terpretation [7]. To the best of our knowledge, this is the

first sound analysis based on formal methods for this type

of issue;

• the design and implementation of an analysis for detecting

over-write issues. As far as we know, this is the first analysis
to address this problem.

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
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The analysis was implemented by extending GoLiSA [31], an

open-source static analyzer based on abstract interpretation that

supports the analysis of several blockchain frameworks written in

Go. The evaluation is conducted on a benchmark suite of existing

smart contracts retrieved from public GitHub repositories, and it

empirically shows that our approach can successfully identify read-

write set issues.

Paper structure. Sect. 2 introduces the blockchain-based ledger

of HF. Sect. 3 provides an overview of read-write set issues in HF.

Section 4 and Sect. 5 present the design of our core contribution for

detecting read-write set issues and its implementation in GoLiSA.

Sect. 6 experimentally evaluates the proposed analysis implemented

in GoLiSA on a benchmark suite of existing smart contracts, while

also benchmarking other tools in detecting the same issues. Sect. 7

presents related work and a comparison with the state of the art.

Sect. 8 concludes the paper.

2 BLOCKCHAIN-BASED LEDGER
In HF, the blockchain-based ledger [12] consists of two distinct,

though related, parts: (i) theWorld State, i.e., a mutable data struc-
ture by default expressed typically as versioned key-value pairs,

that can change over time; (ii) the Blockchain, an immutable data
structure that records all the changes that determine the world state,

as a transaction log. The blockchain data structure is different from

the world state because once written, it cannot be modified. It is

an immutable sequence of blocks, each containing a set of ordered

transactions.

Furthermore, smart contracts never directlymodify the blockchain;

they only interact with the world state through specific read and

write instructions (Tab. 1). These interactions will be collected in

read and write sets ,which are subsequently stored in the blockchain

by the HF protocol.

3 READ-WRITE SET ISSUES
This section describes the read and write issues of HF exploring

their causes and impacts on the application logic of smart contracts

and the data stored in the blockchain-based ledger.

3.1 The Read-after-write Problem
As reported in the official HF documentation [15], it is important

to note that during the execution of a read operation, the retrieved

value corresponds to the one present in the world state of the

blockchain ledger before the transaction’s execution. Therefore,

HF does not employ a read-your-writes consistency [39]. In simpler

terms, the read value will not reflect the most recent update within

the same transaction, even if the key’s value is updated before

reading it. This phenomenon is known as read-after-write (aka read-
write conflict), and it is the cause of several bugs by HF developers

due to its counterintuitive nature, leading to unexpected behaviors

in the chaincode.

For instance, let us consider the code snippet in Fig. 1a, starting

with an initial world state containing the data{key: "myuser",

value: "100"}. At line 5, the PutState call updates the key-

value entry with{key: "myuser", value: "0"}. However, at

line 7, when the GetState call is executed to retrieve the value

1 func ReadAfterWriteIssue(stub *shim.ChaincodeStub) {

2 var user string := "myuser"

3 var value string := "0"

4

5 err = stub.PutState(key, []byte(value))

6 // ...

7 response, err = stub.GetState(key)

8 // ...

9 }

(a) read-after-write

1 func OverWrite(stub *shim.ChaincodeStub) {

2 var value1 string := "0"

3 var value2 string := "1"

4

5 err = stub.PutState("key", []byte(value1))

6 // ...

7 err = stub.PutState("key", []byte(value2))

8 }

(b) over-write

Figure 1: Go examples containing the issues.

associated with "myuser", it still returns "100" (not "0"). As pre-

viously explained, this behavior occurs because write operations

are only committed after the consensus mechanism’s approval,

meaning they take effect after the code execution.

3.2 The Over-write Problem
When a transaction writes a value multiple times to the same key,

only the last written value is retained, implying that prior write

operations on the same key are not preserved in the blockchain

storage [15], thus missing the writing and therefore the tracking of

data in the blockchain. Let us consider the code snippet in Fig. 1b,

assuming an initial world state with no existing data. At line 5,

the PutState operation writes the key-value pair{key: "key",

value: "0"}. Also, line 7 writes a value associated with the key

"key", i.e., the key-value{key: "key", value: "1"} . As pre-

viously explained, after receiving consensus approval and complet-

ing code execution, only one write operation for a specific key is

recorded in the blockchain. In our example, for the key "key", only

the value "1" is written in blockchain, overwriting the value of the

previous write operation, then discarding "0". This behavior could

lead to unintended loss of data that should ideally be preserved

into the blockchain (e.g., for supply-chain systems or tracking ap-

plications) or lead to redundant execution of write operations in

the code.

3.3 Running Example
We propose a running example to better show the criticality of these

two issues. Fig. 2 shows a code snippet of a smart contract in a token

transfer scenario, containing both read-after-write and over-write

issues. At lines 12-30, the method transferTokenToFoo transfers

some tokens from one user to another, called Foo. The user infor-
mation of sender and the amount to transfer are collected in the

variables from and valueToTransfer at lines 14 and 16, respec-

tively. These values are retrieved from the transaction input using

GetFunctionAndParameters() at line 4. Since users can input

arbitrary values, any valuemay be assigned. The Foo user is declared
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Table 1: Read and Write Go APIs in HF.

Category shim.ChaincodeStubInterface’s methods

Write PutState(key string, value []byte)

DelState(key string)

SetStateValidationParameter(key string, ep []byte)

PutPrivateData(collection string, key string, value []byte)

DelPrivateData(collection, key string)

PurgePrivateData(collection, key string)

SetPrivateDataValidationParameter(collection, key string, ep []byte)

Read GetState(key string)

GetStateValidationParameter(key string)

GetStateByRange(startKey, endKey string)

GetStateByRangeWithPagination(startKey, endKey string, pageSize int32, bookmark string)

GetStateByPartialCompositeKey(objectType string, keys []string)

GetHistoryForKey(key string)

GetPrivateData(collection, key string)

GetPrivateDataValidationParameter(collection, key string)

GetPrivateDataByRange(collection, startKey, endKey string)

GetPrivateDataHash(collection, key string)

GetPrivateDataByPartialCompositeKey(collection, objectType string, keys []string)

1 // ...

2 func (s *SmartContract) Invoke(APIstub shim.ChaincodeStubInterface

) sc.Response {

3

4 function, args := APIstub.GetFunctionAndParameters()

5

6 if function == "transferTokenToFoo" {

7 return s.transferTokenToFoo(APIstub, args)

8 }

9 // ... other operations

10 }

11 // ...

12 func (s *SmartContract) transferTokenToFoo(APIstub shim.

ChaincodeStubInterface, args []string) sc.Response {

13

14 from := args[0]

15 to := "Foo"

16 valueToTransfer, err := strconv.Atoi(args[1])

17 // ... error handling

18 value, err := APIstub.GetState(from)

19 // ... error handling

20 fromValue := int(value)

21 // ... error handling

22 err := APIstub.PutState(from, []byte(fromValue - valueToTransfer

))

23 // ... error handling

24 value, err = APIstub.GetState(to)

25 // ... error handling

26 toValue := int(value)

27 // ... error handling

28 err := APIstub.PutState(to, []byte(toValue + valueToTransfer))

29 // ... error handling and other operations

30 }

Figure 2: Read and write issues.

at line 15, where the string "Foo" is assigned to the variable to.

The token transfer occurs at lines 18-28, where GetState(from)

retrieves the current token value of the from user from the ledger,

PutState(from, []byte(fromValue- valueToTranfer)) re-

moves the value valueToTranfer from the from user and writes

the results on the ledger, GetState(to) retrieves the current to-

ken value of the Foo user from the ledger, and PutState(to,

[]byte(toValue + valueToTranfer)) adds the value to the

to user.

In this contract, if from and to are different users, the expected

behavior is the transfer of tokens, moving the value from an user

Algorithm 1 Detection of issues related to Read-Write Set.

1: procedure Analysis(program)
2: stringValues← stringValueAnalysis(program)
3: readers, writers← extractReadAndWrite(program, stringValues)
4: read-write, write-write← extractPairsSameKey(readers, writers)
5: alerts← ∅
6: for each r, w ∈ read-write do ⊲ Read-After-Write Detection

7: if isAfter(r, w, program) then
8: alerts← alerts ∪ buildReadAfterWriteAlarm(r, w)

9: for each w1, w2 ∈ write-write do ⊲ Over-Write Detection

10: if isAfter(w1, w2, program) then
11: alerts← alerts ∪ buildOverWriteAlarm(w1, w2)
12: else if isAfter(w2, w1, program) then
13: alerts← alerts ∪ buildOverWriteAlarm(w2, w1)

14: return alerts

to a Foo user, i.e., the amount is subtracted from the specified user

and added to the Foo user.
However, there are read-after-write and over-write issues that be

can exploited by Foo user to increase its amount of value. Since from

can have any value (as it comes from a transaction input), nothing

prevents the Foo user from creating an input where the value of

from is the same as to (i.e., a transaction to oneself). In this scenario,

suppose the initial state of ledger is{"Foo": 100} , where the

attacker has 100 units of value. If the attacker sends the transaction

input args = {"Foo", 99}, we have that from = "Foo" at line

15, and valueToTransfer = 99 at line 16, while fromValue =

100 after lines 18-19. Then, PutState("Foo", []byte(100 -

99)) occurs at line 27, but value = 100 after lines 24-25 (read-

after-write issue) as it is still read from the pre-execution state. This

is followed by PutState("Foo", []byte(100 + 99)) at line 28.

Moreover, PutState instructions at lines 22 and 28 both involves

the same user "Foo": the only value written to the ledger is 100+99

(over-write issue). Therefore, at the end of the computation of the

transferTokenToFoo method, no subtraction is performed or

recorded in the blockchain for the attacker. Consequently, 99 units

of value are added instead of keeping the value unchanged.

4 DETECTION OF READ-WRITE SET ISSUES
This section presents a high-level overview of the static analysis

approach designed to identify issues related to read-after-write and

over-write problems, as discussed in the previous section. Static
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analysis [36] allows one to verify program properties before the

program execution automatically. Moreover, static analysis via ab-

stract interpretation [7] can provide guarantees about the analyses

such as soundness, i.e., the absence of false negatives for a given

property. In practice, this means that if a sound static analyzer

proves that a program respects a property (e.g., absence of read-

write issues), then all possible executions (with all possible inputs)

of that program will respect that property (i.e., no execution will

expose read-write issues).

Alg. 1 outlines the key components of the proposed analysis.

The algorithm starts by computing the keys for each read/write

operation. Note that keys are strings, as indicated in Tab. 1. At line

2, stringValueAnalysis performs an abstract interpretation-based

static analysis to soundly over-approximate the possible string val-

ues of variables for each program point. It is worth noting that

Alg. 1 is agnostic to the specific choice of the string abstract do-

main, allowing the approach to be instantiated with a variety of

string abstractions, such as [3–6, 24]. Line 3 relies on the function

extractReadAndWrite to determine the set of read and write in-

structions, readers and writers, respectively, by searching for

the signatures of functions reported in Tab. 1. extractReadAnd-
Write also uses the previously computed stringValues to store

abstractions of the keys used by extracted instructions. At line 4,

the extractPairsSameKey function generates pairs of instructions,

namely read-write and write-write sets, which may have com-

mon keys. These pairs are later used to detect read-after-write and

over-write problems at lines 6-8 and 9-13, respectively. In particu-

lar, the isAfter function checks whether an instruction is possibly

executed after another, i.e., if there exists at least one execution

path in the program where the first instruction is executed after

the second one. When isAfter returns true, the analysis triggers
an alarm because a read-write or a write-write set problem was

detected.

Inter-procedural Analysis. Consider the code snippet in Fig. 3a,

which contains a read-after-write issue. Function F calls functions A

and B, resulting in indirect calls to PutState (line 9) and GetState

(line 13) methods, both using the same key "key", thus causing the

read-after-write problem. According to Ren et al. [34], the combina-

tion of multiple functions and methods makes detecting read-write

set issues difficult without proper automatic tools.

To tackle scenarios such as the one in Fig. 3a, both stringValue-
Analysis and isAfter need to be inter-procedural, that is, they should
consider interactions across multiple functions and methods, track-

ing how values are passed from callers to callees. This enables our

analysis to detect read-write set issues such as the one reported in

Fig. 3a. Adopting an intra-procedural approach (as seen in several

tools that will be discussed in Sect. 7) would weaken the analysis,

making it incapable of detecting issues like the one reported in 3a

and, in turn, leading to false negatives.

4.1 Critical Issues
For simplicity, Alg. 1, discussed in the previous section, provides

a high-level overview of the analysis, omitting specific details on

handling specific cases. In the following, we pinpoint these specific

cases and discuss the behavior of the approach when encountering

them.

1 func F(stub *shim.ChaincodeStub) {

2 var key string := "key"

3 var data string := "Hello World!"

4

5 A(stub, key, []byte(value))

6 B(stub, key)

7 }

8 func A(stub *shim.ChaincodeStub, key string, value []byte ) {

9 err = stub.PutState(key, []byte(value))

10 // ...

11 }

12 func B(stub *shim.ChaincodeStub, key string) {

13 response, err = stub.GetState(key)

14 // ...

15 }

(a) Requires interprocedural analysis.

1 func InputFoo(stub *shim.ChaincodeStub) {

2 fun, args = stub.GetFunctionAndParameters()

3

4 var key1 string = args[1]

5 var key2 string = args[2]

6 // ...

7

8 err = stub.PutState(key1, []byte(value))

9 // ...

10

11 response, err = stub.GetState(key2)

12 // ...

13 }

(b) Requires the approximation of user input.

1 func RangeExec(stub *shim.ChaincodeStub) {

2 err = stub.PutState("aa", []byte(value))

3 // ...

4 response, err = stub.GetStateByRange("a", "cc");

5 }

(c) Requires to handle ranges of strings.

1 func DExec(stub *shim.ChaincodeStub) {

2 var key string := "key"

3 var value string := "1"

4

5 defer err = stub.GetState(key)

6 // ...

7 err = stub.PutState(key, []byte(value))

8 }

(d) Requires to handle the behavior of defer instruction.

Figure 3: Go code examples that require specific checks and
analysis settings.

String Value Over-approximation. We adopt a fully static ap-

proach, employing string static analysis to provide an over-approx-

imation of the potential string values associated with keys of read-

/write operations. Thus, when handling user inputs, our approach

cannot precisely infer the possible string values of keys. Consider,

for instance, the code fragment reported in Fig. 3b. At line 2, the

user input is acquired through GetFunctionAndParameters and

then propagated to key1 and key2 at lines 4–5. These are then

used as keys at lines 8 and 11. In this case, a read-after-write issue

arises if the key1 and key2 have the same value; however, since

the value of both variables is statically unknown, they are modeled

using the top element ⊤ of the chosen string abstract domain, mod-

eling any possible string. In turn, our sound analysis (specifically
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extractPairsSameKey at line 4 of Alg. 1) returns a potential match

in the used keys when either one of the keys is abstracted to ⊤. A
similar sound reasoning is applied to partial matches.

Range Key Instructions. Most of the read/write instructions re-

ported in Tab. 1 require a single key as input, with some exceptions

such as GetStateByRange.

The GetStateByRange instruction returns an iterator ranging

all the keys between startKey (inclusive) and endKey (exclusive),

w.r.t. the string lexicographical order. Note that startKey and

endKey can be empty strings, implying an unbounded range query

at the start or end. Following a fully static approach, it is impossible

to consider only the key values stored in the blockchain between

startKey and endKey because they can dynamically change over

time. Therefore, in our analysis, we abstract the key range using

the smallest interval enclosing the possible keys. The interval takes

the form of [𝜎𝑙 , 𝜎𝑢 ), where 𝜎𝑙 is the string lower bound and 𝜎𝑢 is

the string upper bound; any key 𝜎 ∈ [𝜎𝑙 , 𝜎𝑢 ) satisfies 𝜎𝑙 ≤ 𝜎 < 𝜎𝑢 .

Such an abstraction allows us to create an over-approximation of

the range of keys. Consequently, when identifying key matches

within the extractPairsSameKey function (at line 4 of Alg. 1), we

can consider key strings belonging to the interval [𝜎𝑙 , 𝜎𝑢 ).
For instance, consider the code snippet in Fig. 3c. Line 2 writes a

value associated with the key "aa", while the GetStateByRange

instruction at line 4 reads a range of possible values spanning from

the key "a" to "cb". Intuitively, our analysis builds the interval

["a", "cc"), abstracting the following set of values {"a","b", . . . ,

"z", "aa", "ab", . . . , "cb"}. Hence, during the execution of ex-
tractPairsSameKey, a potential key match is identified, as "aa" ∈
["a", "cc").

Partial Composite Key Instructions. Another instruction with a

particular behavior is GetStateByPartialCompositeKey, which

returns an iterator ranging over all composite keys whose prefix

matches the given partial composite key. In such cases, extract-
PairsSameKeywill return a potential key match for each key whose

prefix corresponds to the key of the partial composite keys.

Private Data and Collections. In HF, chaincodes read and write

private data using specific instructions such as GetPrivateData

and PutPrivateData. In addition to the keys, they are required to

specify private data collections [14], which allow a defined subset

of organizations to endorse, commit, or query private data with-

out creating different channels. During the analysis, the values

of collections must be computed and compared before the keys

comparison. If the instructions have the same keys but different

collections, there are no read-write set issues. Since strings identify

collections, their values are abstracted during the string value anal-

ysis and subsequently checked, considering over-approximations

to preserve soundness.

Defer Execution. In Go,the defer statement allows to delay of the

execution of a function call until the surrounding function returns.

As shown in Fig. 3d, the read instruction at line 5 occurs before the

write instruction at line 7. Nevertheless, at run-time, the execution

of the read instruction is deferred until the return of DExec. Thus,

the read instruction is executed after the write one, leading to

a read-after-write issue. In our analysis, isAfter handles deferred
reads and writes accordingly to this semantics, adapting the search

heuristics (e.g., while isAfter normally checks for an execution

path leading from a write to a read, it searches for the opposite

path – from read to write – if the read instruction is deferred).

Other approaches rely on separate instrumentations instead [34].

It is important to highlight that the use of deferring statements

and concurrency-related constructs is highly discouraged within

blockchain communities. Hence, it is rare to find real-world code

that uses these statements on read and write operations of HF.

5 ANALYSIS IMPLEMENTATION IN GoLiSA
Our implementation is based on GoLiSA [30, 32, 33], an extension

of LiSA (Library for Static Analysis) [10, 25, 26] for the analysis of
programs written in Go, also used in the blockchain context.

For the string value analysis, we rely on Tarsis [23, 24], an

abstract domain that approximates string values through finite state

automata, allowing us to perform sound analyses and obtaining

precise results that are on par with state-of-the-art approaches,

while also achieving significantly improved performance.

5.1 Running the Analysis
Analyzing the chaincode reported in Fig. 2, GoLiSA successfully

identifies both the read-after-write and the over-write issues. Specif-

ically, by performing the string analysis with Tarsis, it infers that

the value states containing of variable from can abstract the vari-

able as an automaton that represents any string (i.e., top element

⊤ for Tarsis) because their values are statically unknown, coming

from an user input. On the other hand, to can be abstracted as a

finite automaton that recognizes the string "Foo". Inspecting the

CFG, GoLiSA identifies the read operations at lines 18 and 24, and

write operations at lines 22 and 28. It then checks the key values and

infers that the automaton representing from’s values can simulate

the automaton representing to’s value, thus it is possible that the

concrete values of from may be equal to to. At this point, GoLiSA

collects the read-write and write-write sets of Alg. 1. The first

contains the pair of GetState at line 24 and PutState at line 28,

while the second contains the pair of PutState instructions at

lines 22 and 28, respectively. For each pair, GoLiSA computes if

an execution path exists between the two statements of the pair.

Using a graph search, it verifies whether there exists at least one

path in the CFG connecting the two statements. Finally, once it is

ensured that the paths exist, two warnings are triggered, one for

read-after-write and one for over-write.

6 EXPERIMENTAL EVALUATION
In this section, we discuss the results of our experimental evaluation

of the analysis implemented in GoLiSA for detecting read-write set

issues in existing blockchain software.

We evaluated our approach on a set of 651 existing chaincodes

retrieved from public GitHub repositories. This will allow us to

understand the performance and accuracy of the analysis imple-

mented in GoLiSA. Moreover, we compared the quality of results

with two well-known open-source static analyzers for chaincodes,

namely ChainCode Analyzer [18] and ReviveˆCC [38]. Since these

tools do not provide analysis for over-write issues, our comparison

focuses exclusively on the detection of read-after-write issues. The
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Table 2: Read-write analysis results of GoLiSA.

Issues Affected files Unaffected files #TP #FP #FN
Read-after-write 22 628 38 2 0

Over-write 245 405 481 201 0

evaluation shows that GoLiSA not only outperforms existing static

analyzers in identifying these issues bu also guarantees soundness.

The experiments were conducted on a machine equipped with

an AMD Ryzen 5 5600X 6-Core at 3.70 GHz, 16 GB of RAM DDR4,

1 TB SSD (read 540MB/s, write 500MB/s), running Windows 11 Pro

22H2, Open JDK version 13. During the analysis, 8 GBs of RAM

were allocated to the JVM.

The experimental evaluation can be reproduced using the fol-

lowing artifact: <url blinded>

6.1 Benchmark Composition
The selected benchmark, henceforth referred to as RW, is the one

presented in [32]. RW consists of 651 chaincodes (∼167391 Lines
of Code) retrieved from public GitHub repositories by querying the

keyword "chaincode". To ensure uniqueness, only chaincodes from

unforked repositories were selected, thereby avoiding duplication.

No additional filters were applied based on this result: we consid-

ered all chaincodes found in the crawled repositories to avoid bias

in the analysis outcomes.

6.2 Quantitative Evaluation
GoLiSA properly analyzed 650 chaincodes up on 651, with only 1

analysis failure due to an out-of-memory error. The total execution

time for the detection of both issues is 1 hour, 5 minutes, and

18 seconds, with an average execution time of 6.02 seconds per

chaincode. Tab. 2 shows the results of the read-after-write and

over-write detection of GoLiSA over RW. We denote by #TP, #FP,
and #FN the number of true positives, false positives, and false

negatives among the raised warnings, respectively.

Their classification was carried out through an in-depth manual

investigation performed on all the chaincodes in RW.

6.3 Qualitative Evaluation
To assess the effectiveness of the proposed analysis, we measure

the number of true positives, false positives, and false negatives

raised by the considered tools on RW for detecting the read-after-

write problem
1
. Our benchmark includes 38 known read-after-write

issues that we expect the analyzer to detect and raise warnings for.

ReviveˆCC raises 17 warnings, split into 5 true positives and

12 false positives, but misses 33 read-after-write problems out of

38, corresponding to false negatives. ChainCode Analyzer issues 2

true and no false positives but misses 36 read-after-write problems

out of 38. Instead, GoLiSA can detect all read-after-write problems,

i.e., it issues 38 true positives, together with only 2 false positives

and no false negatives. Tab. 3 summarizes the findings in terms of

precision (
#𝑇𝑃

#𝑇𝑃+#𝐹𝑃 ), recall (
#𝑇𝑃

#𝑇𝑃+#𝐹𝑁 ) and F1 score (
#𝑇𝑃

#𝑇𝑃+ #𝐹𝑁 +#𝐹𝑃
2

).

1
Both ReviveˆCC and ChainCode Analyzer, when they meet a read-after-write problem,

trigger two distinct warnings, one for the read and one for the write operations. Here,

we count them as a single warning.

Table 3: Tool comparison on RW.

Tool Recall Precision F1
ReviveˆCC 13,16% 29,41% 22,22%

ChainCode Analyzer 5,26% 100,00% 10,00%

GoLiSA 100,00% 95,00% 97,44%

GoLiSA achieves the best trade-off between recall and precision on

RW.

7 RELATEDWORK
The consistency of the data read and written by different programs

has been largely studied in the scientific literature during the last

few decades. This topic spans many different contexts.

Multithreaded programs interact through shared memory, and

poorly synchronized interactions can lead to data races [27]. The

behavior of threads when accessing shared memory has been a

topic largely debated and led to the definition of several memory

models and many static analyses targeting the detection of data

races [9, 22, 29] and the approximation of shared values [1, 8, 21]

have been proposed. Instead, in the field of distributed systems, a

problem that recently arose due to the popularity of microservices

has been how to duplicate data (usually stored in databases) to

improve the scalability of the software architecture. The so-called

space-based architectures [35] target exactly such a scenario, where

the same data is duplicated andmaintained consistent across several

distributed nodes.

The main difference w.r.t. our context is that we target the values

read and written by a single sequential program to a persistent

memory (i.e., the blockchain) instead of several programs (such as

threads or services). Outside blockchain systems, such a problem is

usually managed through databases guaranteeing ACID (Atomicity,

Consistency, Isolation, and Durability) properties [11].

7.1 System-level Solutions
As far as we know, we have yet to find any system-level solu-

tion, although they have been proposed for other issues such as

phantom reads [30]. System-level solutions may offer several bene-

fits, not only impacting the handling of read-write and overwrite

issues in the HF architecture but directly providing support for read-

your-write consistency. However, as noted in [30], applying these

solutions in enterprise environments poses significant challenges

because they require an extensive rework involving the entire or a

portion of the HF architecture, which may discourage IT compa-

nies. Indeed, companies typically require high degrees of software

maturity, including stable, long-term supported versions and quick

security updates. Therefore, it would require an official change of

HF framework rather than unofficial custom solutions.

On the other hand, static analysis of chaincodes only requires

developers to analyze and make minor fixes to the code, thus with-

out affecting any component of the HF architecture and keeping

the official HF framework unchanged.
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7.2 Static Analysis of Chaincodes
In this section, we focus our attention on existing analyses for HF.

In particular, read-after-write issues in HF are well-known [20, 40].

The most popular open-source tools for the verification of these

issues are Chaincode Analyzer [18], by Fujitsu from Hyperledger

Labs, and ReviveˆCC [38], an extension of the Revive analyzer
2

for chaincodes. Both tools represent the program using abstract

syntax trees (AST), applying intra-procedural analyses on them and

syntactic checks to detect read and write statements. In particular,

these checks match only the name signature of methods without

performing additional checks on the full method signatures. Then,

for each read-write tuple, they check the actual parameters in each

key position and perform a syntactic check on them. These kinds

of checks have limited expressiveness. They might consider the

signatures of wrong methods with names equal to the Hyperledger

APIs but different packages, leading to false positives. Moreover,

regarding the keys, they do not infer the value passed by the ac-

tual parameter but perform checks on the token syntax of actual

parameters. For instance, this means that two variables used as

keys with an equal stored value but named differently will be con-

sidered different by the analyses, leading to false negatives. We

experimentally compared these tools with our analysis, showing

that our approach achieves significantly better results in terms of

recall and precision.

Lv et al. [20] and Yamashita et al. [40] propose similar tools in-

spired by Chaincode Scanner and ReviveˆCC, but they cover more

issues and more accurately. However, they seem to be still per-

forming mostly similar checks for read-after-write issues. Shah

et al. [37] describe an additional solution based on ASTs. While

promising, these three approaches report no information on key

detection, and, unfortunately, their implementations are not pub-

licly available, making it impossible to compare them with our

approach. Li et al. [19] provide a tool based on ASTs and symbolic

execution [17] for several HF issues. However, for the read-after-
write detection, they perform only intra-procedural reasoning on

ASTs without exploiting symbolic execution. Differently, Kim et

al. [16] analyze call stacks to check if a GetState is called af-

ter a PutState, using symbolic execution with a SMT solver to

match the keys of both calls. Another solution is proposed by Ren

et al. [34]. They study the possible patterns of read-after-write

issues, also considering defer instructions and inter-procedural

functions, providing a static analysis-based detection scheme for

read-after-write issues. Their tool uses pattern matching to extract

features related to read and write statements from a pruned AST

form of smart contracts. Subsequently, it builds one-way linked

lists to represent the calling sequences of read and write methods,

considering also inter-procedural bindings. Such lists are then used

to detect read-after-write issues. As reported by the author, the tool

can perform better than other tools like ReviveˆCC, reducing the

false negative rate and improving the accuracy rate. To the best of

our knowledge, there are no tools other than GoLiSA able to detect

over-write issues of HF.

7.2.1 Comparison with Our Approach. Tab. 4 and Tab. 5 propose

a summary view of the tool comparison, summarizing the main

2
Available at https://github.com/mgechev/revive

differences between our approach w.r.t. other tools and coverage of

instructions considered during the analysis for each tool, respec-

tively. Unfortunately, most of the tools proposed (except ReviveˆCC

and Chaincode Analyzer) in the section above are not publicly

available. For this reason, the comparison is based on a theoretical

level, analyzing their available documentation and scientific litera-

ture. We indicate with n.d. when there is no data about that since

tools are not publicly available and manuscripts do not specify if

a method is covered. Regarding [37], the tool is dedicated to the

analysis of Node.js chaincodes, but Node.js API names are similar

and can be mapped to the Go ones.

As reported by Tab. 4 and Tab. 5, GoLiSA supports the complete

list of write and read statements and exploits a semantic string anal-

ysis to detect the possible values of the keys rather than a syntactic

pattern matching approach. In addition, GoLiSA does not require

additional data structures (such as the linked lists used in [34])

to detect when a write is executed before a read statement since

GoLiSA can perform search algorithms directly on the program.

Moreover, GoLiSA pursues sound analysis, avoiding false negatives.

Currently, the closest approach to ours is the one reported in [16].

The main difference is in the key detection technique, which in-

volves a symbolic execution with an SMT solver. However, symbolic

execution can suffer several drawbacks (such as path explosion,

expensive constraint solving, and unsolvable paths). However, since

the tool was not available, evaluating it and highlighting possible

issues in this regard was impossible. Our string analysis, based

on abstraction interpretation, can scale even in cases where the

symbolic execution fails.

8 CONCLUSION
This paper proposes a semantics-based static analysis approach

based on abstract interpretation for detecting read-write set issues.

The experiments on real-world chaincodes, crawled from GitHub,

empirically prove it useful and scalable in practice. Moreover, com-

pared to the current state of the art, our approach is sound, leading

to the absence of false negatives, and it can detect read-write set

issues before chaincodes are deployed in a blockchain that would

become immutable once they are stored in the blockchain. Future

work will explore aliasing analysis [28] to reduce false positives

and investigate alternative abstract string value domains for im-

proved key detection. Additionally, we plan to extend the approach

to propose fixes or patches for the detected issues, providing a more

comprehensive solution.
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